In this paper, we adapt Mono-Implicit Runge-Kutta schemes for numerical approximations of singularly perturbed delay differential equations. The schemes are developed to reduce the computational cost of the fully implicit method which combine the accuracy of implicit method and efficient implementation. Numerical stability properties of the schemes are investigated. Numerical simulations are provided to show the effectiveness of the method for both stiff and non-stiff initial value problems.

1.
C. F.
Curtiss
,
J. O.
Hirschfelder
,
Integration of stiff equations
,
Proc Natl Acad Sci U S A.
38
(
3
) (
1952
)
235
2343
.
2.
W.
Enright
,
P.
Muir
,
A Runge Kutta boundary value ODE solver with defect control
,
Technical Report 267/93
,
Department of Computer Science, University of Toronto
,
1993
.
3.
K.
Dekker
,
J.
Verwer
, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations,
CWI Monographs
2
,
Amsterdam
,
1984
.
4.
E.
Hairer
,
G.
Wanner
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
,
Berlin
,
1996
.
5.
E.
Hairer
,
G.
Wanner
,
Stiff differential equations solved by Radau methods
,
J. Comput. Appl. Math.
111
(
12
) (
1999
)
93
111
.
6.
G. A.
Bocharov
,
G. I.
Marchuk
,
A. A.
Romanyukha
,
Numerical solution by LMMs of a stiff delay-differential system modelling an immune response
,
Numer. Math.
73
(
1996
)
131
148
.
7.
N.
Guglielmi
,
E.
Hairer
,
Implementing Radau II-A methods for stiff delay differential equations
,
Computing
67
(
2001
)
1
12
.
8.
N.
Guglielmi
,
E.
Hairer
,
Computing breaking points in implicit delay differential equations
,
Adv. Comput. Math.
29
(
3
) (
2008
)
229
247
.
9.
K.
Strehmel
,
R.
Weiner
,
H.
Claus
,
Stability analysis of linearly implicit one-step interpolation methods for stiff retarded differential equations
,
SIAM J. Numer. Anal.
26
(
5
) (
1989
)
1158
1174
.
10.
C. T. H.
Baker
,
C. A. H.
Paul
,
Issues in the numerical solution of evolutionary delay differential equations
,
J. Adv. Comput. Math.
3
(
1995
)
171
196
.
11.
V. B.
Kolmanovskii
,
V. R.
Nosov
,
Stability of Functional Differential Equations
,
Academic Press
,
New York
,
1986
.
12.
G. G.
Kirlinger
,
Linear multistep methods applied to stiff initial value problems
,
J. Math. Comput. Mod.
40
(
2004
)
1181
1192
.
13.
H.
Podhaisky
,
R.
Weiner
,
B. A.
Schmitt
,
Rosenbrock-type Peer two-step methods
,
Appl. Numer. Math.
53
(
2005
)
409
420
.
14.
H. S.
Strogatz
,
Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering
,
Colorado Westview Press
,
Denver
,
2000
.
15.
H.
Podhaisky
,
W.
Marszalek
,
Bifurcations and synchronization of singularly perturbed oscillators: an application case study
,
Nonlinear Dynam.
69
(
2012
)
949
959
.
16.
F. A.
Rihan
,
Stability conditions for singularly perturbed delay differential equations
(
2008
).
17.
G. A.
Bocharov
,
F. A.
Rihan
,
Numerical modelling in biosciences using delay differential equations
,
J. Comput. Appl. Math.
125
(
2000
)
183
199
.
18.
F. A.
Rihan
,
B. F.
Rihan
,
Numerical modelling of biological systems with memory using delay differential equations
,
Appl. Math. & Inf. Sci.
9
(
3
) (
2015
)
1615
1658
.
19.
G.
Dahlquist
, Error analysis for a class of methods for stiff nonlinear initial value problems, in:
G.A.
Watson
(Ed.), Numerical Analysis (
1975
), in:
Lecture Notes in Mathematics
, vol.
506
,
Springer-Verlag
,
Berlin
, 1975.
20.
A.
Halanay
,
Differential Equations– Stability, Oscillations, Time Lags
,
Academic Press
,
New York
,
1966
.
21.
A.
Longtin
,
J.
Milton
,
Complex oscillations in the human pupil light reflex with mixed and delayed feedback
,
Math. Biosci.
90
(
1988
)
183199
.
22.
M. C.
Mackey
,
L.
Glass
,
Oscillation and chaos in physiological control systems
,
Science
197
(
1977
)
287
289
.
23.
V. Y.
Glizer
,
Asymptotic analysis and solution of a finitehorizon H control problem for singularly-perturbed linear systems with small state delay
,
J. Optim. Theor. Appl.
117
(
2
) (
2003
)
295
325
.
24.
A. C.
Fowler
,
G. P.
Kalamangalam
,
G.
Kember
,
A mathematical analysis of the grodin model of respiratory control
,
IMA J. Math. Appl. Med. Biol.
10
(
1993
)
249
280
.
25.
K.
Ikeda
,
Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system
,
Opt. Commun.
30
(
1979
)
257
.
26.
H. M.
Gibbs
,
F.
Hopf
,
D.L.
Kaplan
,
R.
Shoemaker
,
Observation of chaos in optical bistability
,
Phys. Rev. Lett.
46
(
1981
)
474
477
.
27.
C. T. H.
Baker
,
Retarded differential equations
,
J. Comput. Appl. Math.
125
(
2000
)
309
355
.
28.
A.
Bellen
,
M.
Zennaro
,
Numerical Methods for Delay Differential Equations
,
Oxford University Press
,
New York
,
2003
.
29.
F. A.
Rihan
,
Numerical Treatment of Delay Differential Equations in Bioscience
, PhD. Thesis,
University of Manchester
,
UK
,
2000
.
30.
C. A. H.
Paul
,
A user-guide to Archi – an explicit Runge-Kutta code for solving delay and neutral differential equations and parameter estimation problems
, MCCM report
283
,
1997
, ISSN ,
University of Manchester
.
31.
L. F.
Shampine
,
S.
Thompson
,
Solving DDEs in Matlab
,
Appl. Numer. Math.
37
(
2001
)
441
458
.
32.
K.
Burrage
,
A special family of Runge-Kutta methods for solving stiff differential equations
,
BIT
18
(
1978
)
22
41
.
33.
J.
Butcher
,
P.
Chartier
,
A generalization of singly-implicit Runge-Kutta methods
,
J. Appl. Num. Math.
24
(
1997
)
343
350
.
34.
S.
Norsett
,
Semi-explicit Runge-Kutta methods
, report, Math. and Comp. No. 6/74,
Dept. of Math., University of Trondheim
(
1974
).
35.
J.
Cash
,
A.
Singhal
,
Mono-implicit Runge-Kutta formula for the numerical integration of stiff differential systems
,
IMA J. Num. Anal.
2
(
1982
)
211
227
.
36.
J.
Butcher
,
The Numerical Analysis of Ordinary Differential Equations
,
Wiley
London
,
1987
.
37.
K.
Burrage
,
F.
Chipman
,
P.
Muir
,
Order results for mono-implicit Runge-Kutta methods
(
1994
).
38.
F. A.
Rihan
,
E. H.
Doha
,
M.
Hassan
,
N. M.
Kamel
,
Numerical treatments for volterra delay integro-differential equations
,
Comput. Methods Appl. Math.
9
(
3
) (
2009
)
292
308
.
39.
P. H.
Muir
,
Optimal discrete and continuous mono-implicit Runge-Kutta schemes for BVODEs
,
J. Adv. Comput. Math.
10
(
1999
)
135
167
.
40.
C. A. H.
Paul
,
C. T. H.
Baker
,
Stability boundaries revisited Runge-Kutta methods for delay differential equations
, Rep.No. 205,
University of Manchester
1991
.
This content is only available via PDF.