We derive solutions of the Ornstein-Uhlenbeck and of a linear Wick-type stochastic differential equation (SDE) driven by grey Brownian motion. The solutions are characterized to be in a suitable distribution space.
REFERENCES
1.
W.R.
Schneider
, in Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988)
, edited by S.
Albeverio
, J. E.
Fenstad
, H.
Holden
, and T.
Lindstrøm
(Cambridge Univ. Press
, Cambridge
, 1992
), pp. 261
–282
.2.
A.
Mura
and F.
Mainardi
, Integral Transforms Spec. Funct.
20
, 185
–198
(2009
).3.
M.
Grothaus
, F.
Jahnert
, F.
Riemann
, and J. L.
Silva
, J. Funct. Anal.
268
, 1876
–1903
(2015
).4.
M.
Grothaus
and F.
Jahnert
, J. Func. Anal.
270
, 2732
–2768
(2016
).5.
6.
7.
G. M.
Mittag-Leffler
, Acta Math.
29
, 101
–181
(1905
).8.
9.
Y. M.
Berezansky
and Y. G.
Kondratiev
, Spectral MEthods in Infinite-Dimensional Analysis
, Vol. 1
(Kluwer Academic Publishers
, DorDrecht
, 1995
)10.
H.
Pollard
, Bull. Amer. Math. Soc.
54
, 1115
–1116
(1948
).11.
S. G.
Samko
, A. A.
Kilbas
, and O. I.
Marichev
, Fractional Integrals and Derivatives
(Gordon and Breach Science Publishers
, Yverdon
, 1993
), pp. xxxvi
–976
, Theory and Applications, Edited and with a foreword by S. M. Nikol’skiĭ, Translated from the 1987 Russian original, Revised by the authors.12.
A. A.
Kilbas
, H. M.
Srivastava
, and J. J.
Trujillo
, Theory and Applicatinos of Fractional Differential Equations, North-Holland Mathematics Studies
, Vol. 204
(Elsevier Science B.V.
, Amsterdam
, 2006
)13.
Y. G.
Kondratiev
, L.
Streit
, W.
Westerkamp
, and J.-A.
Yan
, Hiroshima Math. J.
28
, 213
–260
(1998
).14.
Y. G.
Kondratiev
, P.
Leukert
, and L.
Streit
, Acta Appl. Math.
44
, 269
–294
(1996
).15.
H.
Holden
, B.
Oksendal
, J.
Ubøe
, and T. S.
Zhang
, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach
, 2nd. ed., Universitext (Springer
, 2010
), p. 311
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)