Form factors of Gaussian processes have been studied in view of their relevance for polymer models. In this paper we calculate them for the wider class of generalized grey Brownian processes.
REFERENCES
1.
P.
Biswas
and P. B. J.
Cherayil
, Dynamics of fractional Brownian walks
. J. Phys. Chem.
99
, 816
–821
(1995
).2.
W.
Bock
, J.
Bornales
, C. O.
Cabahug
, S.
Eleutério
, and L.
Streit
, Scaling Properties of Weakly Self-Avoiding Fractional Brownian Motion in One Dimension
. J. Stat. Phys.
161
, 1155
–1162
(2015
).3.
W.
Bock
, J. L.
Silva
, and L.
Streit
, Generalized grey Brownian motion and polymer models
(in preparation).4.
A.
Erdelyi
(ed.). Higher Transcendental Functions, Bateman Manuscript Project
vol. 3
, Ch. 18.1, (McGraw-Hill
, New York
, 1955
).5.
6.
M.E.
Fisher
and G.
de Gennes
, Scaling Concepts in Polymer Physics
. (Cornell University Press
, Ithaca, New York
, 1979
).7.
M.
Grothaus
, M.J.
Oliveira
, J.-L.
Silva
and L.
Streit
, Self-avoiding fBm - The Edwards model
. J. Stat. Phys.
145
, 1513
–1523
(2011
).8.
B.
Hammouda
. Probing nanoscale structures - the SANS toolbox
, Ch. 28, available at http://www.ncnr.nist.gov/staff/hammouda/the-SANS-toolbox.pdf, 2016
.9.
A. A.
Kilbas
, F.
Mainardi
and V. R.
Sergei
, Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics
, 2014
.10.
NIST Handbook of Mathematical Functions
(F. W. J.
Olver
, D. W.
Lozier
, R. F.
Boisvert
and C. W.
Clark
, eds.), (Cambridge University Press
, 2010
).11.
W. R.
Schneider
. Grey noise. In S.
Albeverio
, G.
Casati
, U.
Cattaneo
, D.
Merlini
, and R.
Moresi
, editors, Stochastic Processes, Physics and Geometry
, (World Scientific Publishing
, Teaneck, NJ
, 1990
) p. 676
–681
.12.
J. L.
Silva
and L.
Streit
. Form Factors for Generalized Grey Brownian Motion
(in preparation).13.
I.
Teraoka
. Polymer Solutions: An Introduction to Physical Properties
(Wiley
, New York
, 2002
).
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)