The ion source NIO1 (Negative Ion Optimization 1) was developed and installed as a reduced-size model of multi-aperture sources used in neutral beam injectors. NIO1 beam optics is optimized for a 135 mA H current (subdivided in 9 beamlets) at a Vs = 60 kV extraction voltage, with an electron-to-ion current ratio Rj up to 2. Depending on gas pressure used, NIO1 was up to now operated with Vs < 25 kV for beam extraction and Vs = 60 kV for insulation tests. The distinction between capacitively coupled plasma (E-mode, consistent with a low electron density plasma ne) and inductively coupled plasma (H-mode, requiring larger ne) was clearly related to several experimental signatures, and was confirmed for several gases, when applied radiofrequency power exceeds a given threshold Pt (with hysteresis). For hydrogen Pt was reduced below 1 kW, with a clean rf window and molybdenum liners on other walls; for oxygen Pt ≤ 400 W. Beams of H and O were separately extracted; since no caesium is yet introduced into the source, the expected ion currents are lower than 5 mA; this requires a lower acceleration voltage Vs (to keep the same perveance). NIO1 caesium oven was separately tested and Cs dispensers are in development. Increasing the current in the magnetic filter circuit, modifying its shape, and increasing the bias voltage were helpful to reduce Rj (still very large up to now, about 150 for oxygen, and 40 for hydrogen), in qualitative agreement with theoretical and numerical models. A second bias voltage was tested for hydrogen. Beam footprints and a spectral emission sample are shown.

1.
M.
Cavenago
,
P.
Veltri
,
F.
Sattin
,
G.
Serianni
, and
V.
Antoni
,
IEEE Trans. Plasma Sci.
36
,
1581
1588
(
2008
).
2.
C.
Baltador
 et al., “
Finite elements numerical codes as primary tool to improve beam optics and support measurements in NIO1
,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
3.
P.
Agostinetti
 et al.,
Nucl. Fusion
51
, 063004/
1
16
(
2011
).
4.
V.
Toigo
 et al.,
Nucl. Fusion
55
, 083025/
1
13
(
2015
).
5.
U.
Fantz
,
P.
Franzen
,
B.
Heinemann
, and
D.
Wunderlich
,
Rev. Sci. Instrum.
85
, 02B305/
1
5
(
2014
).
6.
G.
Dimov
and
G.
Roslyakov
,
Nucl. Fusion
15
,
551
553
(
1975
).
7.
E.
Surrey
and
A.
Holmes
, “
The beam driven plasma neutralizer
,” in
3th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
1515
(
AIP
,
Melville, NY
,
2013
), pp.
532
540
.
8.
E.
Sartori
 et al., “
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
9.
H.
Zohm
 et al.,
Nucl. Fusion
53
, 073019/
1
6
(
2013
).
10.
M.
Honda
,
T.
Takizuka
,
K.
Tobita
,
G.
Matsunaga
, and
A.
Fukuyama
,
Nucl. Fusion
51
, 073018/
1
9
(
2011
).
11.
S.
Kuppel
,
D.
Matsushita
,
A.
Hatayama
, and
M.
Bacal
,
J. Appl. Phys.
109
, 013305/
1
12
(
2011
).
12.
F.
Taccogna
,
P.
Minelli
, and
S.
Longo
,
Plasma Sources Sci. Technol.
22
, 045019/
1
9
(
2013
).
13.
P.
Veltri
 et al., “Study of electron transport across the magnetic filter of NIO1 negative ion source,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
14.
W.
Kraus
 et al.,
Rev. Sci. Instrum.
83
, 02B104/
1
5
(
2012
).
15.
M.
Tuszewski
,
Phys. Plasmas
5
,
1198
1205
(
1998
).
16.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
John Wiley
,
New York
,
1994
) p.
396
.
17.
M.
Cavenago
and
S.
Petrenko
,
Rev. Sci. Instrum.
83
, 02B503/
1
3
(
2012
).
18.
S.
Lishev
,
A.
Shivarova
,
K.
Tarnev
,
S.
Iordanova
,
I.
Koleva
,
T.
Paunska
, and
D.
Iordanov
,
J. Phys. D: Appl. Phys.
46
, 165204/
1
10
(
2013
).
19.
M.
Cavenago
,
G.
Serianni
,
M. D.
Muri
,
P.
Agostinetti
,
V.
Antoni
,
C.
Baltador
,
M.
Barbisan
,
L.
Baseggio
,
M.
Bigi
,
V.
Cervaro
,
F. D.
Agostini
,
E.
Fagotti
,
T.
Kulevoy
,
N.
Ippolito
,
B.
Laterza
,
A.
Minarello
,
M.
Maniero
,
R.
Pasqualotto
,
S.
Petrenko
,
M.
Poggi
,
D.
Ravarotto
,
M.
Recchia
,
E.
Sartori
,
M.
Sattin
,
P.
Sonato
,
F.
Taccogna
,
V.
Variale
,
P.
Veltri
,
B.
Zaniol
,
L.
Zanotto
, and
S.
Zucchetti
,
Rev. Sci. Instrum.
87
, 02B320/
1
4
(
2016
).
20.
M. D.
Muri
 et al.,
Fusion Engineering and Design
96
,
249
252
(
2015
).
21.
G.
Serianni
 et al., “
Acquisition, data retrieval, interlock and control systems for the negative ion source NIO1
,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
22.
M.
Recchia
 et al.,
Fus. Eng. and Design
86
,
1545
1548
(
2011
).
23.
A.
Pimazzoni
 et al., “
A first characterization of NIO1 particle beam by means of a diagnostic calorimeter
,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
24.
M.
Cavenago
and
P.
Veltri
,
Plasma Sources Sci. Technol.
23
, 065024/
1
14
(
2014
).
25.
M.
Barbisan
 et al., “
Electron density and temperature in NIO1 rf source, operated in oxygen and argon
,” in
5th Int. Symp. Negative Ions, Beams and Sources
,
AIP Conference Proceedings
in press (
AIP
,
Melville, NY
,
2017
).
26.
M.
Cavenago
,
T.
Kulevoy
,
S.
Petrenko
,
G.
Serianni
,
V.
Antoni
,
M.
Bigi
,
F.
Fellin
,
M.
Recchia
, and
P.
Veltri
,
Rev. Sci. Instrum.
82
, 02A707/
1
3
(
2012
).
27.
V.
Variale
 et al.,
Rev. Sci. Instrum.
87
, 02B305/
1
3
(
2016
).
This content is only available via PDF.