The aim of this study is to empirically investigate the performance of APARCH(1,1) volatility model with the Student-t error distribution on five foreign currency selling rates to Indonesian rupiah (IDR), including the Swiss franc (CHF), the Euro (EUR), the British pound (GBP), Japanese yen (JPY), and the US dollar (USD). Six years daily closing rates over the period of January 2010 to December 2016 for a total number of 1722 observations have analysed. The Bayesian inference using the efficient independence chain Metropolis-Hastings and adaptive random walk Metropolis methods in the Markov chain Monte Carlo (MCMC) scheme has been applied to estimate the parameters of model. According to the DIC criterion, this study has found that the APARCH(1,1) model under Student-t distribution is a better fit than the model under normal distribution for any observed rate return series. The 95% highest posterior density interval suggested the APARCH models to model the IDR/JPY and IDR/USD volatilities. In particular, the IDR/JPY and IDR/USD data, respectively, have significant negative and positive leverage effect in the rate returns. Meanwhile, the optimal power coefficient of volatility has been found to be statistically different from 2 in adopting all rate return series, save the IDR/EUR rate return series.

1.
S. Z. S.
Abdalla
and
P.
Winker
,
International Journal of Economics and Finance
,
4
(
8
),
161
176
(
2012
).
2.
R. F.
Engle
,
Econometrica
,
50
,
987
1007
(
1982
).
3.
T.
Bollerslev
,
Review of Economics and Statistics
,
69
,
542
547
(
1987
).
4.
D. B.
Nelson
,
Econometrica
,
59
,
347
370
(
1991
).
5.
L. R.
Glosten
,
R.
Jagannathan
, and
D. E.
Runkle
,
The Journal of Finance
,
48
,
1779
1801
(
1993
).
6.
Z.
Ding
,
C. W.
Granger
, and
R. F.
Engle
,
Journal of Empirical Finance
,
1
(
1
),
83
106
(
1993
).
7.
J. - M.
Zakoian
,
Journal of Economic Dynamics and Control
,
15
,
931
955
(
1994
).
8.
Sumiyana
,
Gadjah Mada Int. Journal of Business
,
9
(
3
),
399
443
(
2007
).
9.
S.
Saadah
and
Y.
Panjaitan
,
Gadjah Mada Int. Journal of Business
,
18
(
1
),
71
82
(
2016
).
10.
M. S.
Triady
,
R.
Kurniasari
,
A. F.
Utami
, and
M. I.
Sofyan
,
International Journal of Economics and Management
,
10
(
S1
),
1
17
(
2016
).
11.
D. B.
Nugroho
,
B.
Susanto
, and
S. R.
Pratama
,
Journal of Economics and Development Studies
,
9
(
1
),
65
75
(
2017
).
12.
D.
Ruppert
,
Statistics and data analysis for financial engineering
, (
Springer
:
New York
,
2011
) p.
497
.
13.
T.
Nakatsuma
,
Journal of Econometrics
,
95
,
57
69
(
2000
).
14.
P.
Haitao
,
Eighth Annual Conference Proceedings of Uncertain Systems in China
,
12
16
(
2010
).
15.
R. S.
Tsay
,
Analysis of Financial Time Series
, Second Edition, (
John Wiley & Sons
:
New Jersey
,
2005
) p.
81
.
16.
S.
Taylor
,
Modelling Financial Time Series
, (
John Wiley & Sons
:
New York
,
1986
).
17.
S.
Kim
,
N.
Shepard
, and
S.
Chib
,
Review of Economic Studies
,
65
,
361
393
(
1998
).
18.
I. - Y.
Chuang
,
J. - R.
Lu
,
P. - H.
Lee
,
Applied financial Econometrics
,
17
(
13
),
1051
1060
(
2007
).
19.
L.
Tierney
,
Annals of Statistics
,
22
(
4
),
1701
1762
(
1994
).
20.
J.
Albert
,
Bayesian Computation with R
, Second Edition, (
Springer
:
New York
,
2009
) p.
94
.
21.
M. H.
Chen
and
Q. M.
Shao
,
Journal of Computational and Graphical Statistics
,
8
,
69
92
(
1993
).
22.
A. D.
Sokal
, “Title of Chapter,” in
Functional Integration: Basics and Applications
, edited by
C.
DeWitt-Morette
,
P.
Cartier
,
A.
Folacci
(
Springer
,
New York
,
1997
), pp.
131
192
.
23.
A.
Berg
,
R.
Meyer
, and
J.
Yu
,
Journal of Business & Economic Statistics
,
22
(
1
),
107
120
(
2004
).
24.
D.
Salvatore
,
International Economics
, Eleventh Edition, (
John Wiley & Sons
:,
2013
) p.
426
.
25.
A.
Dutta
,
Journal of Statistics: Advance in Theory and Applications
,
12
(
2
),
99
108
(
2014
).
26.
D. B.
Nugroho
and
T.
Morimoto
,
Journal of The Japan Statistical Society
,
44
(
1
),
83
118
(
2014
).
27.
D. B.
Nugroho
and
T.
Morimoto
,
Journal of Applied Statistics
,
43
(
10
),
1906
1927
(
2016
).
This content is only available via PDF.