The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.

1.
H.
Güvenir
and
N.
Emeksiz
, “
An expert system for the differential diagnosis of erythemato-squamous diseases
,”
Expert Syst. Appl.
, vol.
18
, pp.
43
49
,
2000
.
2.
C.
Cortes
and
V.
Vapnik
, “
Support-vector networks
,”
Mach. Learn.
, vol.
20
, no.
3
, pp.
273
297
, Sep.
1995
.
3.
N.
Cristianini
and
J. S.
Taylor
,
An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
.
Cambridge
:
University Press New York
,
2000
.
4.
S. S.
Zhou
,
H. W.
Liu
, and
F.
Ye
, “
Variant of Gaussian kernel and parameter setting method for nonlinear SVM
,”
Neurocomputing
, vol.
72
, no.
13–15
, pp.
2931
2937
,
2009
.
5.
J.
Xu
,
Y. Y.
Tang
,
B.
Zou
,
Z.
Xu
,
L.
Li
, and
Y.
Lu
, “
Generalization performance of Gaussian kernels SVMC based on Markov sampling
,”
Neural Networks
, vol.
53
, pp.
40
51
,
2014
.
6.
M.
Dash
and
H.
Liu
, “
Consistency-based search in feature selection
,”
Artif. Intell.
, vol.
151
, no.
1–2
, pp.
155
176
, Dec.
2003
.
7.
L.
Talavera
, “An evaluation of filter and wrapper methods for feature selection in categorical clustering,”
Adv. Intell. Data Anal. VI
, p.
742
,
2005
.
8.
M.
Suyanto
, MT,
rtificial Intelligent, Searching, Reasoning, Planning dan Learning
.
Bandung
:
Informatika Bandung
,
2007
.
9.
E.
Barati
,
M.
Saraee
,
A.
Mohammadi
,
N.
Adibi
, and
M. R.
Ahamadzadeh
, “
A Survey on Utilization of Data Mining Approaches for Dermatological (Skin) Diseases Prediction
,”
2011
.
10.
L.
Nanni
, “
An ensemble of classifiers for the diagnosis of erythemato-squamous diseases
,”
Neurocomputing
, vol.
69
, no.
7–9
, pp.
842
845
, Mar.
2006
.
11.
M.
Pantic
and
L. J. M.
Rothkrantz
, “
Expert system for automatic analysis of facial expressions
,”
Image Vis. Comput.
, vol.
18
, no.
11
, pp.
881
905
,
2000
.
12.
S.
Lekkas
and
L.
Mikhailov
, “
Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases
.,”
Artif. Intell. Med.
, vol.
50
, no.
2
, pp.
117
26
, Oct.
2010
.
13.
C.
Science
and
S.
Engineering
, “
Prediction of Different Dermatological Conditions Using Naïve Bayesian Classification
,” vol.
4
, no.
1
, pp.
864
868
,
2014
.
14.
S.
Aruna
,
“A Hybrid Feature Selection Method based on IGSBFS and Naïve Bayes for the Diagnosis of Erythemato - Squamous Diseases,”
vol.
41
, no.
7
,
2012
.
15.
J.
Xie
and
C.
Wang
, “
Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases
,”
Expert Syst. Appl.
, vol.
38
, no.
5
, pp.
5809
5815
, May
2011
.
16.
V.
Narayan
and
G.
Subbarayan
, “
An Optimal Feature Subset Selection Using GA for Leaf Classification
,” vol.
11
, no.
5
, pp.
447
451
,
2014
.
17.
C.
Tsai
,
W.
Eberle
, and
C.
Chu
, “
Knowledge-Based Systems Genetic algorithms in feature and instance selection
,”
Knowledge-Based Syst.
, vol.
39
, pp.
240
247
,
2013
.
18.
F. T.
Anggraeny
,
M.
Widyasri
,
J. T.
Informatika
,
F. T.
Industri
,
F.
Teknik
, and
U.
Surabaya
, “
KLASIFIKASI VOTING ANN PSO BICLASS DENGAN SELEKSI
,” pp.
3
8
.
19.
U. K. &
I.
Djatna
,
Taufik
and
U. K.
Morimoto
,
Yasuhiko
, “
Pembandingan Stabilitas Algoritma Seleksi Fitur menggunakan Transformasi Ranking Normal
,”
Portal Garuda
.
20.
Y.
Yang
and
J. O.
Pedersen
, “
A comparative Study On Feature Selection in Text Categorization
,”
1997
.
21.
S.
Thaseen
, “
Intrusion Detection Model Using fusion of PCA and optimized SVM
,” pp.
879
884
,
2014
.
22.
S.
Thaseen
and
A.
Kumar
, “
Intrusion detection model using fusion of chi-square feature selection and multi class SVM
,”
J. KING SAUD Univ. - Comput. Inf. Sci.
,
2016
.
23.
H.
Supriyanto
, “
Implementasi Support Vector Machines untuk Memprediksi Arah Pergerakan Harga Harian Valuta Asing EUR/USD, GBP/USD, dan USD/JPY) dengan Metode Kerel Trick menggunakan Fungsi Kernel Radial Basis Function
,” pp.
1
4
,
2012
.
24.
P.
Baldi
,
S.
Brunak
,
Y.
Chauvin
,
C. A. F.
Andersen
, and
H.
Nielsen
, “
Bioinformatics review
,” vol.
16
, no.
5
, pp.
412
424
,
2000
.
25.
H.
He
and
M.
Ye
,
Imbalanced Learning: Foundations, Algorithms, and Applications
.
2013
.
26.
E. D.
Übeyli
, “
Multiclass support vector machines for diagnosis of erythemato-squamous diseases
,”
Expert Syst. Appl.
, vol.
35
, no.
4
, pp.
1733
1740
,
2008
.
27.
K.
Polat
and
S.
Güneş
, “
A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems
,”
Expert Syst. Appl.
, vol.
36
, no.
2
PART 1, pp.
1587
1592
,
2009
.
28.
E. D.
Übeyli
, “
Combined neural networks for diagnosis of erythemato-squamous diseases
,”
Expert Syst. Appl.
, vol.
36
, no.
3 PART 1
, pp.
5107
5112
,
2009
.
29.
H.
Liu
,
J.
Sun
,
L.
Liu
, and
H.
Zhang
, “
Feature selection with dynamic mutual information
,”
Pattern Recognition.
, vol.
42
, no.
7
, pp.
1330
1339
,
2009
.
30.
M.
Karabatak
and
M. C.
Ince
, “
A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases
,”
Expert Syst. Appl.
, vol.
36
, no.
10
, pp.
12500
12505
,
2009
.
This content is only available via PDF.