The prototype of the EEG (electroencephalogram) instrumentation systems has been developed based on 32-bit microcontrollers of Cortex-M3 ATSAM3X8E and Analog Front-End (AFE) ADS1299 (Texas Instruments, USA), and also consists of 16-channel dry-electrodes in the form of EEG head-caps. The ADS1299-AFE has been designed in a double-layer format PCB (Print Circuit Board) with daisy-chain configuration. The communication protocol of the prototype was based on SPI (Serial Peripheral Interface) and tested using USB SPI-Logic Analyzer Hantek4032L (Qingdao Hantek Electronic, China). The acquired data of the 16-channel from this prototype has been successfully transferred to a PC (Personal Computer) with accuracy greater than 91 %. The data acquisition system has been visualized with time-domain format in the multi-graph plotter, the frequency-domain based on FFT (Fast Fourier Transform) calculation, and also brain-mapping display of 16-channel. The GUI (Graphical User Interface) has been developed based on OpenBCI (Brain Computer Interface) using Java Processing and also can be stored of data in the *.txt format. Instrumentation systems have been tested in the frequency range of 1-50 Hz using MiniSim 330 EEG Simulator (NETECH, USA). The validation process has been done with different frequency of 0.1 Hz, 2 Hz, 5 Hz, and 50 Hz, and difference voltage amplitudes of 10 µV, 30 µV, 50 µV, 100 µV, 500 µV, 1 mV, 2 mV and 2.5 mV. However, the acquisition system was not optimal at a frequency of 0.1 Hz and for amplitude potentials of over 1 mV had differences of the order 10 µV.

1.
J. M.
Rogers
 et al.,
Int. J. Psychophysiol.
106
,
87
96
(
2016
).
2.
T. B.
Nazzal
,
S. A.
Mahmoud
, and
M. O.
Shaker
,
Microelectronics J.
56
,
81
96
(
2016
).
3.
W.
Mumtaz
 et al.,
Biomed. Signal Process. Control
31
,
108
115
(
2017
).
4.
L.
Lin
,
Y.
Meng
,
J.
Chen
, and
Z.
Li
,
Biomed. Signal Process. Control
20
,
45
51
(
2015
).
5.
B.
Albert
 et al.,
Procedia Comput. Sci.
96
,
703
712
(
2016
).
6.
K. H.
Lee
,
S.
Member
, and
N.
Verma
,
IEEE J. Solid-State Circuits
48
,
1625
1637
(
2013
).
7.
P. J.
Davies
and
J.
Bohórquez
,
Proceedings of the 29ᵗʰ Southern Biomedical Engineering Conference
,
Miami, 2013
(
IEEE
,
New Jersey
,
2013
), pp.
63
64
.
8.
Y.
Zou
and
V.
Nathan
,
IEEE J. Biomed. Heal. Inform.
20
,
73
81
(
2016
).
9.
V.
Nathan
and
R.
Jafari
,
IEEE Trans. Biomed. Circuits Syst.
9
,
631
640
(
2015
).
10.
J.
Minguillon
,
M. A.
Lopez-gordo
, and
F.
Pelayo
,
Biomed. Signal Process. Control
31
,
407
418
(
2017
).
11.
Texas-Instrument
, “
Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements ADS1299
,” (
2012
), available at http://www.ti.com/product/ADS1299
12.
L. O. H. Z.
Toresano
 et al.,
Proceedings of the First International Symposium of Biomedical Engineering (ISBE)
,
Depok, 2016
, edited by
Y.
Whulanza
, et al.
(
AIP Publishing
,
New York
,
2017
), Vol.
1817
, p.
040009
.
13.
O. N.
Rahma
,
S. K.
Wijaya
,
Prawito
, and
C.
Badri
,
Proceedings of the 9th IASTEM (International Academy of Science, Technology, Engineering and Management) International Conference
,
Bali, 2016
(
World Research Library
,
2016
), pp.
17
22
.
14.
E. P.
Giri
,
A. M.
Arymurthy
, and
S. K.
Wijaya
,
Proceedings of the 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)
,
Depok, 2015
(
IEEE
,
New Jersey
,
2015
), pp.
297
301
.
15.
M. I.
Sudrajat
,
S. K.
Wijaya
,
H.
Arjadi
, and
S.
Abdan
,
J. Tek. Biomed. Ind.
2
,
1
7
(
2016
).
16.
D.
Acharya
,
A.
Rani
, and
S.
Agarwal
,
Proceedings of the 4ᵗʰ International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)
,
Noida, 2015
(
IEEE
,
New Jersey
,
2015
).
17.
E.
Mastinu
,
M.
Ortiz-catalan
, and
B.
Håkansson
,
Proceedings of the 37ᵗʰ Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, 2015
(
IEEE
,
New Jersey
,
2015
).
18.
Z.
Song
,
Z.
Ji
,
J.
Ma
,
B.
Sputh
,
U. R.
Acharya
, and
O.
Faust
,
Comput. Methods Programs Biomed
.
108
,
656
664
(
2012
).
19.
S. R.
Sridhara
 et al.,
IEEE J. Solid-State Circuits
46
,
721
730
(
2011
).
20.
V.
Gandhi
 et al.,
IEEE Trans. Neural Networks Learn. Syst.
25
,
278
288
(
2014
).
21.
C.
Lin
,
B.
Lin
,
F.
Lin
, and
C.
Chang
,
IEEE Syst. J.
8
,
363
370
(
2014
).
22.
A.
Page
 et al.,
IEEE Trans. Circuits Syst. - II Express Briefs
62
,
109
113
(
2015
).
23.
L.
Losonczi
,
L. F.
Márton
,
T. S.
Brassai
, and
L.
Farkas
,
Procedia Technol.
12
,
141
147
(
2014
).
24.
T.
Roh
 et al.,
IEEE Trans. Biomed. Circuits Syst.
8
,
755
764
(
2015
).
25.
Y.
Dai
,
X.
Wang
,
X.
Li
, and
Y.
Tan
,
Measurement
74
,
11
20
(
2015
).
26.
H.
Woehrle
,
J.
Teiwes
,
E.
Kirchner
, and
F.
Kirchner
,
APCBEE Procedia
7
,
60
66
(
2013
).
27.
A.
Syakura
,
Designing eight channels Electroencephalogram (EEG) system based on ADS1299 controlled by Arduino uno for signal decomposition
,
BSc Project
,
Universitas Indonesia, Depok
,
2015
.
28.
M.
Tomasini
 et al.,
IEEE Sens. J.
16
,
3887
3895
(
2016
).
29.
I.
Käthner
 et al.,
Clin. Neurophysiol.
124
,
327
338
(
2013
).
30.
J.
Li
,
K.
Wang
, and
S.
Zhu
,
Phys. Med. Biol.
49
,
701
717
(
2004
).
This content is only available via PDF.