Let F, G, and H be simple graphs. We say F → (G, H) if for every 2-coloring of the edges of F there exist a monochromatic G or H in F. The Ramsey number r(G, H) is min {v(F): F → (G, H)}, the size Ramsey number r*(G, H) is min {e(F): F → (G, H)}, and the restricted size Ramsey number r*(G, H) is min {e(F): F → (G, H), v(F) = r(G, H)}. In 1972, Chvá tal and Harary gave the Ramsey number for P3 versus any graph H with no isolates. In 1983, Harary and Miller started the investigation of the (restricted) size Ramsey number for some pairs of small graphs with order at most four. In 1983, Faudree and Sheehan continued the investigation and summarized the complete results on the (restricted) size Ramsey number for all pairs of small graphs with order at most four. In 1998, Lortz and Mengenser gave both the size Ramsey number and the restricted size Ramsey number for all pairs of small forests with order at most five. Lately, we investigate the restricted size Ramsey number for a path of order three versus all connected graphs of order five. In this work, we continue the investigation on the restricted size Ramsey number for a pair of small graphs. In particularly, for a path of order three versus connected graphs of order six.

1.
R.
Diestel
,
Graph Theory
(
Springer
,
Berlin
,
2005
).
2.
P.
Erdös
,
R. J.
Faudree
,
C. C.
Rousseau
, and
R.
Schelp
,
Period. Math. Hung.
9
,
145
161
(
1978
).
3.
S. A.
Burr
,
Topics in Graph Theory
328
,
58
75
(
1979
).
4.
R. J.
Faudree
and
R. H.
Schelp
, A survey of results on the size Ramsey number, Paul Erdös and His Mathematics II (Budapest, 1999),
Bolyai Soc. Math. Stud.
11
, Janos Bolyai Math. Soc.,
Budapest
,
2002
, pp.
291
309
.
5.
F.
Harary
and
Z.
Miller
, in
Studies in Pure Mathematics
, edited by
P.
Erdos
(
Springer
,
Berlin
,
1983
), pp.
271
283
.
6.
R. J.
Faudree
and
J.
Sheehan
,
J. Graph Theory
7
,
53
55
(
1983
).
7.
R.
Lortz
and
I.
Mengersen
,
Australas. J. Combin.
18
,
3
12
(
1998
).
8.
D. R.
Silaban
,
E. T.
Baskoro
, and
S.
Uttunggadewa
,
Electronic Journal of Graph Theory and Applications
5
,
155
162
(
2017
).
9.
D. R.
Silaban
,
E. T.
Baskoro
, and
S.
Uttunggadewa
, “
On the Restricted Size Ramsey Number for P3 versus Dense Connected Graph
,”
Electron. Notes Discrete Math.
(submitted).
10.
R. J.
Faudree
,
Discrete Math.
46
,
151
157
(
1983
).
11.
D. R.
Silaban
,
E. T.
Baskoro
, and
S.
Uttunggadewa
, “
On the Restricted Size Ramsey Number for Path with Three Vertices versus Any Connected Graph
,”
Graph Combin.
(submitted).
12.
D. R.
Silaban
,
E. T.
Baskoro
, and
S.
Uttunggadewa
,
Procedia Comput. Sci.
74
,
21
26
(
2015
).
13.
D. R.
Silaban
,
E. T.
Baskoro
, and
S.
Uttunggadewa
,
Proceedings of The 7th SEAMS UGM International Conference on Mathematics and Its Applications 2015
,
Yogyakarta
,
2015
, edited by
F. A.
Kusumo
,
I. E.
Wijayanti
,
I. E.
Aluicius
, and
Y.
Susanti
(
AIP Publishing
,
New York
,
2016
), Vol.
1707
, p.
020020
.
14.
V.
Chvátal
and
F.
Harary
,
Pac. J. Math.
41
,
335
345
(
1972
).
This content is only available via PDF.