Synthesis and characterization of mesoporous ZSM-5 using two kinds of secondary templates with different polarity, polydiallyldimethylammonium chloride (PDDA-Cl) or cetyltrimethylammonium bromide (CTABr) were studied. The weight lost after calcination at 550 °C for 5 hours were 30.93 wt% and 25.87 wt% for PDDA-Cl-templated ZSM-5 (ZSM-5pc) and CTABr-templated ZSM-5 (ZSM-5cs), respectively. Both as-synthesized mesoporous ZSM-5 zeolites then were characterized by XRD, FTIR, SEM, and EDX. Based on wide angle XRD analysis that both mesoporous ZSM-5 showed similar diffraction patterns and the typical peaks of ZSM-5 in which 2θ = 7°-9° (doublet peaks) and 22°-25° (triplet peaks) appeared. For the analysis of functional group, FTIR analysis showed that both mesoporous ZSM-5 gave strong band at 550 cm−1, which is attributed to asymmetric stretching vibration of the double 5-rings from MFI zeolites. Meanwhile, the result of EDX calculation showed mesoporous ZSM-5pc had Si/Al ratio of and ZSM-5cs had Si/Al ratio of 12.62. Furthermore, the SEM images exhibited mesoporous ZSM-5pc had morphology of hexagonal (coffin-like) while ZSM-5cs had ellipse form.

1.
A.
Bill
,
A.
Wokaun
,
B.
Eliasson
,
E.
Killer
, and
U.
Kogelschatz
,
Energy Conversion and Management
38
,
S415
S422
(
1997
).
2.
A. S.
Aricò
,
V.
Baglio
, and
V.
Antonucci
, in
Electrocatalysis of Direct Methanol Fuel Cell: From Fundamental to Application
, edited by
J.
Zhang
and
H.
Liu
(
Willey-VCH
,
Weinheim
,
2009
), pp.
1
78
3.
B.
Gurau
and
E. S.
Smotkin
.
J. Power Sources
112
,
339
352
(
2002
).
4.
Y.K.
Krisnandi
, et al,
Procedia Chem.
14
,
508
515
(
2015
).
5.
N. V.
Beznis
,
B. M.
Weckhuysen
, and
J. H.
Bitter
,
Catal. Letters
136
,
52
56
(
2010
).
6.
Y.
Zhu
, et al,
Chem. Eur. J.
17
,
14618
14627
(
2011
).
7.
K.
Zhang
and
M. L.
Ostraat
,
Catal. Today
264
,
3
15
(
2015
)
8.
L.
Wang
,
Z.
Zhang
,
C.
Yin
,
Z.
Shan
, and
F. S.
Xiao
,
Microporous Mesoporous Mater.
131
,
58
67
(
2010
).
9.
X.
Meng
,
F.
Nawaz
, and
F. S.
Xiao
.
Nano Today
4
,
292
301
(
2009
).
10.
F. S.
Xiao
, et al,
Angew. Chem. Int. Ed.
45
,
3090
3093
(
2006
).
11.
Y.
Jiang
, et al,
J. Taiwan Inst. Chem.
61
,
234
240
(
2016
).
12.
L.
Jin
, et al,
React. Kinet. Mech. Cat.
113
,
575
584
(
2014
).
13.
E. M.
Flanigen
,
H.
Khatami
, and
H. A
Seymenski
, in
Advances in Chemistry Series 101: Molecular Sieve Zeolites-I
, edited by
E. M.
Flanigen
and
L. B.
Sands
(
American Chemical Society
,
Washington D. C
,
1971
), pp.
201
229
.
14.
G.
Coudurier
,
C.
Naccache
, and
J. C.
Vedrine
,
J. Chem. Soc. Chem. Commun.
24
,
1413
1415
(
1982
).
15.
M. L.
Goncalves
,
L. D.
Dimitrov
,
M. H.
Jordӓo
,
M.
Wallau
, and
E. A.
Urquieta-González
.
Catal. Today
133-135
,
69
79
(
2008
).
16.
K. R.
Kloetstra
,
H. W.
Zandbergen
, and
H. V.
Bekkum
.
Catal. Lett.
33
,
157
163
(
1995
).