Vehicle Routing Problem (VRP) often occurs when the manufacturers need to distribute their product to some customers/outlets. The distribution process is typically restricted by the capacity of the vehicle and the working hours at the distributor. This type of VRP is also known as Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). A Biased Random Key Genetic Algorithm (BRKGA) was designed and coded in MATLAB to solve the CVRPTW case of soft drink distribution. The standard BRKGA was then modified by applying chromosome insertion into the initial population and defining chromosome gender for parent undergoing crossover operation. The performance of the established algorithms was then compared to a heuristic procedure for solving a soft drink distribution. Some findings are revealed (1) the total distribution cost of BRKGA with insertion (BRKGA-I) results in a cost saving of 39% compared to the total cost of heuristic method, (2) BRKGA with the gender selection (BRKGA-GS) could further improve the performance of the heuristic method. However, the BRKGA-GS tends to yield worse results compared to that obtained from the standard BRKGA.

1.
Luthfi
M
,
Isa
M
,
Matematika
F
,
Alam
P
,
Teknologi
I
,
Nopember
S
, et al. 
Algoritma Genetika Ganda untuk Capacitated Vehicle Routing Problem
.
J SAINS DAN SENI ITS
.
2015
;
4
(
2
):
2
7
.
2.
Putri
FB
,
Mahmudy
WF
,
Ratnawati
DE
,
Informatika
T
,
Teknologi
P
,
Komputer
I
, et al. 
Penerapan Algoritma Genetika Untuk Vehicle Routing Problem with Time Window (VRPTW) Pada Kasus Optimasi Distribusi Beras Bersubsidi
.
DORO Repos J Mhs PTIIK Univ Brawijaya
.
2015
;
5
(
1
):
1
9
.
3.
Lukitasary
W
,
Suyanto
,
Dayawati
RN
. Capacitated vehicle routing problem time windows (cvrptw) dengan menggunakan algoritma improved ant colony system (iacs) dan algoritma simulated annealing(sa).
Universitas Telkom
;
2011
.
4.
Lydia
PR
,
Suyanto
,
Dayawati
RN
. Capacitated vehicle routing problem time windows (cvrptw) menggunakan algoritma harmony search.
Universitas Telkom
;
2011
.
5.
Faiz
E
,
El
F.
Studi Komparasi Penyelesaian Capacitated Vehicle Routing Problem (Cvrp) Dengan Metode Saving Matrix Dan Generalized Assignment
.
J Mhs Mat.
2013
;
1
(
4
):
276
9
.
6.
Cahyaningsih
WK
.
Penyelesaian Capacitatedvehicle Routing Problem (Cvrp) Menggunakan Algoritma Sweep Untuk Optimasi Rute Distribusi Surat Kabar Kedaulatan Rakyat
. In:
Seminar Nasional Matematika dan Pendidikan Matematika UNY
.
2015
. p.
1
8
.
7.
Hutasoit
CS
,
Susanty
S
,
Imran
A.
Penentuan Rute Distribusi Es Balok Menggunakan Algoritma Nearest Neighbour dan Local Search
.
Reka Integr.
2014
;
2
(
2
):
268
76
.
8.
Mukhsinin
ALI
,
Imran
A
,
Susanty
S.
Penentuan Rute Distribusi CV. IFFA Menggunakan Metode Nearest Neighbour dan Local Search
.
Reka Integr.
2013
;
1
(
2
):
129
38
.
9.
Arunanto
FX
,
Hintono
A.
Aplikasi Paralel Branch and Bound Untuk Menyelesaikan Vehicle Routing Problem Menggunakan Pustaka Mpich Dan Glpk
.
JUTI J Ilm Teknol Inf
[Internet].
2011
;
9
(
1
):
1
. Available from: http://juti.if.its.ac.id/index.php/juti/article/view/61
10.
Sembiring
AC
. Penentuan rute distribusi produk yang optimal dengan menggunakan algoritma heuristik pada pt. coca-cola bottling indonesia medan.
Tugas Akhir. Universitas Sumatera Utara
;
2008
.
11.
Maryati
I
,
Wibowo
HK
.
Optimasi penentuan rute kendaraan pada sistem distribusi barang dengan ant colony optimization 1
. In:
Seminar Nasional Teknologi Informasi & Komunikasi Terapan 2012 (Semantik
).
2012
. p.
163
8
.
12.
Alam
MZ
. Menggunakan Modifikasi Algoritma Artificial Bee Colony. Skripsi.
Universitas Syarif Hidayatullah
Jakarta
.;
2013
.
13.
Grasas
A
,
Ramalhinho
H
,
Pessoa
LS
,
Resende
MGC
,
Caballé
I
,
Barba
N.
On the improvement of blood sample collection at clinical laboratories
.
BMC Health Serv Res
[Internet].
2014
;
14
(
1
):
12
. Available from: http://www.biomedcentral.com/1472-6963/14/12%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84892187241&partnerID=tZOtx3y1
14.
Bean
JC
.
Genetic Algorithms and Random Keys for Sequencing and Optimization
.
ORSA J Comput
[Internet].
1994
May 1;
6
(
2
):
154
60
. Available from:
15.
Ericsson
M
,
Pardalos
PM
.
A Genetic Algorithm for the Weight Setting Problem in OSPF Routing
.
J Comb Optim.
2002
;
6
(
3
):
299
333
.
16.
Gonçalves
JF
,
de Almeida
JR
.
A Hybrid Genetic Algorithm for Assembly Line Balancing
.
J Heuristics
[Internet].
2002
;
8
(
6
):
629
42
. Available from:
17.
Gonçalves
JF
,
Resende
MGC
.
Biased random-key genetic algorithms for combinatorial optimization
.
J Heuristics
[Internet].
2011
;
17
(
5
):
487
525
. Available from:
18.
Prasetyo
H
,
Fauza
G
,
Amer
Y
,
Lee
SH
.
Survey on applications of biased-random key genetic algorithms for solving optimization problems
.
2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM
).
2015
. p.
863
70
.
19.
Lucena
ML
,
Andrade
CE
,
Resende
MGC
,
Miyazawa
FK
.
Some extensions of biased random-key genetic algorithms
.
XLVI Simpósio Bras Pesqui Operacional
[Internet].
2014
;
28
(
3
):
2469
80
. Available from: http://web2-clone.research.att.com/export/sites/att_labs/people/De_Andrade_Carlos_Eduardo/library/publications/Lucena2014_Extensions_BRKGA.pdf
This content is only available via PDF.