In this work, characterization of thermal performance and optical properties of a material using a new developed indoor facility is undertaken. The indoor facility is capable of independently controlling the temperature of the material and the flux incident on it. Thereby, allowing investigation of independent effect of temperature and flux on a material’s thermal performance and optical properties variations. An unpolished 304/304L stainless steel is selected as a candidate material. The selected material is machined to obtain a sample having 20 mm diameter and 10 mm thickness. The sample is exposed to five levels of homogenized fluxes in the range of 579.3 kW m−2 to 917.1 kW m−2 for the duration of 1000s and 3000s. It is found that the thermal performance of the materials decreases with the increase in incident flux but this decrement depends on the temperature of the material. The 21% decrement in the thermal performance is obtained when temperature of the material is changed by 159 K while only 6.7% decrement in thermal performance is observed under same condition when the temperature of the material changes by 22 K. The variation of optical properties also depends on the temperature of the material. Under the same flux of 917.1 kW m−2 and exposure duration of 1000s, the reflectance of the material changes by 26% and 7% when temperature of the material is maintained at 557 K and 368 K respectively.

1.
J.T.
Houghton
,
Y.
Ding
,
D.J.
Griggs
,
M.
Noguer
,
P.J.
van der Linden
,
K.M. X.
Dai
, and
C.A.
Johnson
,
Climate Change 2001: The Scientific Basis
(
Cambridge University Press
,
Cambridge
,
2001
), pp.
92
.
2.
IRENA
,
Concentrating Solar Power
(
International Renewable Energy Agency
,
2012
), pp.
1
48
.
3.
O.
Behar
,
A.
Khellaf
, and
K.
Mohammedi
,
A review of studies on central receiver solar thermal power plants
.
Renewable and Sustainable Energy Reviews
,
23
:
12
39
.(
2013
).
4.
Z.
Wang
,
O.
Raccurt
,
A.
Disdier
,
D.
Bourdon
,
S.
Donnola
,
A.
Stollo
, and
A.
Gioconia
,
International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014Study of the Stability of a Selective Solar Absorber Coating under Air and High Temperature Conditions
.
Energy Procedia
,
69
:
1551
1557
. (
2015
).
5.
R.
Pitchumani
,
A.
Boubault
,
B.
Claudet
,
O.
Faugeroux
, and
G.
Olalde
,
Proceedings of the SolarPACES 2013 International ConferenceAccelerated Aging of a Solar Absorber Material Subjected to Highly Concentrated Solar Flux
.
Energy Procedia
,
49
:
1673
1681
.(
2014
).
6.
M.
Brogren
,
A.
Helgesson
,
B.
Karlsson
,
J.
Nilsson
, and
A.
Roos
,
Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators
.
Solar Energy Materials and Solar Cells
,
82
(
3
):
387
412
.(
2004
).
7.
A.
Fernández-García
,
M.E.
Cantos-Soto
,
M.
Röger
,
C.
Wieckert
,
C.
Hutter
, and
L.
Martínez-Arcos
,
Durability of solar reflector materials for secondary concentrators used in CSP systems
.
Solar Energy Materials and Solar Cells
,
130
:
51
63
.(
2014
).
8.
M.
Liu
,
N.H. Steven
Tay
,
S.
Bell
,
M.
Belusko
,
R.
Jacob
,
G.
Will
,
W.
Saman
, and
F.
Bruno
,
Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies
.
Renewable and Sustainable Energy Reviews
,
53
:
1411
1432
.(
2016
).
9.
C.E.
Kennedy
, Review of Mid- to High- Temperature Solar Selective Absorber Materials (
National Renewable Energy Laboratory
,
2002
), pp.
1
58
.
10.
A.
Boubault
,
B.
Claudet
,
O.
Faugeroux
,
G.
Olalde
, and
J.-J.
Serra
,
A numerical thermal approach to study the accelerated aging of a solar absorber material
.
Solar Energy
,
86
(
11
):
3153
3167
.(
2012
).
11.
A.
Boubault
,
B.
Claudet
,
O.
Faugeroux
,
N.
Guerin
, and
G.
Olalde
,
Study of the aging of a solar absorber material following the evolution of its thermoradiative and thermophysical properties
.
High temperatures - high pressures
,
42
(
5
):
405
420
.(
2013
).
12.
A.
Boubault
,
B.
Claudet
,
O.
Faugeroux
, and
G.
Olalde
,
Aging of solar absorber materials under highly concentrated solar fluxes
.
Solar Energy Materials and Solar Cells
,
123
:
211
219
.(
2014
).
13.
A.
Boubault
,
B.
Claudet
,
O.
Faugeroux
, and
G.
Olalde
,
Aging of solar absorber materials under highly concentrated solar fluxes
.
Solar Energy Materials and Solar Cells
,
123
(
0
):
211
219
.(
2014
).
14.
B.
Zalba
,
J.M.
Marnín
,
L.F.
Cabeza
, and
H.
Mehling
,
Review on thermal energy storage with phase change: materials, heat transfer analysis and applications
.
Applied Thermal Engineering
,
23
(
3
):
251
283
.(
2003
).
15.
M.M.
Kenisarin
,
High-temperature phase change materials for thermal energy storage
.
Renewable and Sustainable Energy Reviews
,
14
(
3
):
955
970
.(
2010
).
16.
J.
Cot-Gores
,
A.
Castell
, and
L.F.
Cabeza
,
Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions
.
Renewable and Sustainable Energy Reviews
,
16
(
7
):
5207
5224
.(
2012
).
17.
P.
Pardo
,
A.
Deydier
,
Z.
Anxionnaz-Minvielle
,
S.
Rougé
,
M.
Cabassud
, and
P.
Cognet
,
A review on high temperature thermochemical heat energy storage
.
Renewable and Sustainable Energy Reviews
,
32
:
591
610
.(
2014
).
18.
J.
Sarwar
,
G.
Georgakis
,
R.
LaChance
, and
N.
Ozalp
,
Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications
.
Solar Energy
,
100
:
179
194
.(
2014
).
19.
E.
Optics
.
Taperd Light Pipe Homogenizing Rods
. (
2016
) [cited 2016 March 21]; Available from: http://www.edmundoptics.com/optics/prisms/light-pipes-homogenizing-rods/tapered-light-pipe-homogenizing-rods/3071/.
20.
J.
Sarwar
,
G.
Georgakis
,
K.
Kouloulias
, and
K.E.
Kakosimos
,
Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications
.
Energy Conversion and Management
,
92
(
0
):
331
341
.(
2015
).
This content is only available via PDF.