In the present work, the behaviour of ZrO2 – Y2O3 coatings in contact with molten salts at 500 °C has been studied. The coatings were prepared by sol-gel and deposited by dip-coating on AISI 304 specimens previously prepared by sanding and polishing. The behaviour in contact with molten salt was studied through static corrosion tests by the immersion of the coated samples in an alkali-nitrate mixture with a composition of 60 wt.% NaNO3/40 wt.% KNO3 (commonly known as Solar Salt). Prior to test, the deposited coatings were characterized using Scanning Electron Microscopy and X-Ray Diffraction, showing a compacted, homogeneous and uniform aspect and t-YSZ as main component. After corrosion tests, the samples were characterized via gravimetric, Scanning Electron Microscopy and X-Ray Diffraction. The results show a good behaviour of the coated samples compared with the bare coupon samples. However after 1000 h of testing m-ZrO2 appears in the composition,. At this preliminary study, results confirm the suitability of ZrO2 – Y2O3 coatings in solar applications after those working hours, although it is necessary to optimize the coating and study its behaviour at longer times.

1.
L.
Sang
,
N.
Ren
,
Y.
Wu
,
C.
Burda
and
C.
Ma
,
Solar Energy Materials and Solar Cells
124
,
61
66
(
2014
).
2.
M.M.
Kenisarin
,
Renewable and Sustainable Energy Reviews
14
,
955
970
(
2010
).
3.
N.
Ren
,
Y.
Wu
,
T.
Wang
and
C.
Ma
,
J. Them. Anal. Calorim.
104
,
1201
1208
(
2011
).
4.
H.L.
Zhang
,
J.
Baeyens
,
J.
Degreve
and
G.
Cacères
,
Renewable and Sustainable Energy Reviews
22
,
466
481
(
2013
).
5.
P.
Zhang
,
X.
Xiao
,
Z.N.
Meng
,
M.
Li
,
Applied Energy
,
137
,
758
772
(
2015
).
6.
Q.
Peng
,
X.
Yang
,
J.
Ding
,
X.
Wei
and
J.
Yang
,
Applied Energy
112
,
682
689
(
2013
).
7.
C.Y.
Zhao
and
Z.G.
Wu
,
Solar Energy Materials and Solar Cells
95
,
3341
3346
(
2011
).
8.
S.
Guillot
 et al,
Applied Energy
94
,
174
181
(
2012
).
9.
Y.
Xu
,
T.
Xia
,
W.
Wang
,
G.
Zhang
and
B.
Jia
,
Sol. Energy Mater. Sol. Cells
132
,
260
266
(
2015
).
10.
A.G.
Fernandez
,
A.
Rey
,
I.
Lasanta
,
S.
Mato
,
M.P.
Brady
and
F.J.
Perez
,
Mater. Corros.
65
,
267
275
(
2014
).
11.
A.G.
Fernández
,
M.
Cortes
,
E.
Fuentealba
and
F.J.
Pérez
,
Renew. Energ.
80
,
177
183
(
2015
).
12.
A.
Díaz-Parralejo
,
A.L.
Ortiz
and
R.
Caruso
,
Ceramics International
36
,
2281
2286
(
2010
).
13.
B.Y.
Johnson
,
J.
Edington
,
A.
Williams
and
M.J.
O’Keefe
,
Materials Characterization
54
,
41
48
(
2005
).
14.
A.
Amri
,
Z.T.
Jiang
,
T.
Pryor
,
C.Y.
Yin
,
Z.
Xie
and
N.
Mondinos
,
Surface and Coatings Technology
207
,
367
374
(
2012
).
15.
K.
Mimura
,
K.
Kato
,
The Japan Society of Applied Physics
52
,
09KC06-2
5
(
2013
).
16.
V.
Encinas-Sánchez
,
A.
Macías-García
,
M.A.
Díaz-Díez
,
P.
Brito
and
D.
Cardoso
,
Ceramics International
41
,
5138
5146
(
2015
).
17.
A.
Díaz-Parralejo
,
A.
Macías-García
,
J.
Sánchez-González
,
M.A.
Díaz-Díez
and
E.M.
Cuerda-Correa
,
Journal of Non-Crystalline Solids
357
,
1090
1095
(
2011
).
18.
V.
Encinas-Sánchez
,
A.
Macías-García
,
M.A.
Díaz-Díez
and
A.
Díaz-Parralejo
,
Journal of the Ceramic Society of Japan
124
,
185
191
(
2016
).
19.
S.T.
Aruna
,
N.
Balaji
and
K.S.
Rajam
,
Materials Characterization
62
,
697
705
(
2011
).
20.
N.
Reddy
and
A.S.
Gandhi
,
Journal of the European Ceramic Society
33
,
1867
1874
(
2013
).
21.
Y.
Hui
,
S.
Zhao
,
J.
Xu
,
B.
Zou
,
Y.
Wang
,
X.
Cai
,
L.
Zhu
and
X.
Cao
,
Ceramics International
42
,
341
350
(
2016
).
This content is only available via PDF.