Concentrating solar power (CSP) systems use solar absorbers to convert sunlight into thermal electric power. In CSP systems, a high reflective surface focuses sunlight onto a receiver that captures the solar energy and converts it into heat. The operation of high efficiency CSP systems involves improvements in the performance of the coatings of the solar absorption materials. To accomplish this, novel, more efficient selective coatings are being developed with high solar absorptance and low thermal losses at their operation temperature. Heat losses in a CSP system occur by three mechanisms: conduction, convection and radiation. It has been widely documented that energy losses increase with increasing operating temperature of CSP systems, and the precise knowledge of the thermophysical properties of the materials involved in CSP systems may allow us to increase the efficiency of systems. In this work, we applied the pulsed photoradiometry technique (PPTR) to evaluate the changes in the thermophysical properties of selective coatings on a variety of substrates as a function of temperature. Three types of coatings deposited with two different techniques on three types of substrate were examined: commercial coatings based on titanium oxynitride deposited by sputtering on substrates of copper and aluminum, coatings based on black nickel deposited by electrochemical methods on substrates of steel, and coatings based on black cobalt deposited by electrochemical methods on substrates of steel and copper. Values of the thermal diffusivity and thermal conductivity were obtained in the temperature range of 25 to 550 °C. Optical reflectance measurements have been performed in order to provide an estimate of the dependence of the thermal emittance on temperature using the black body radiation theory.

1.
Hossain
MS
,
Saidur
R
,
Fayaz
H
, et al. 
Review on solar water heater collector and thermal energy performance of circulating pipe
.
Renew Sustain Energy Rev.
2011
;
15
(
8
):
3801
3812
. doi:.
2.
Setién-Fernández
I
,
Echániz
T
,
González-Fernández
L
, et al. 
First spectral emissivity study of a solar selective coating in the 150-600°C temperature range
.
Sol Energy Mater Sol Cells
.
2013
;
117
:
390
395
. doi:.
3.
Li
Z
,
Chen
C
,
Luo
H
,
Zhang
Y
,
Xue
Y.
All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system
.
Sol Energy
.
2010
;
84
(
8
):
1413
1421
. doi:.
4.
Gong
G
,
Huang
X
,
Wang
J
,
Hao
M.
An optimized model and test of the China’s first high temperature parabolic trough solar receiver
.
Sol Energy
.
2010
;
84
(
12
):
2230
2245
. doi:.
5.
Almeco-Tinox Solar
.
Tinox Energy
.
2010
:
8
. www.almeco-tinox.com.
6.
Lizama-Tzec
FI
,
Macías
JD
,
Estrella-Gutiérrez
M a.
, et al. 
Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion
.
J Mater Sci Mater Electron
. August
2014
. doi:.
7.
D.M.
Herrera-Zamora
,
F.I.
Lizama-Tzec
,
O.
Ares
and
G.
Oskam
.
Electrodeposition and Characterization of Selective Coatings Based on Black Cobalt for Solar-to-Thermal Energy Conversion
.
ECS Trans.
2015
;
69
(
31
):
7
13
. doi:.
8.
Parker
WJ
,
Jenkins
RJ
,
Butler
CP
,
Abbott
GL
.
Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity
.
J Appl Phys.
1961
;
32
(
1961
):
1679
1684
. doi:.
9.
Mukai
K
,
Xiao
F.
Density of Ni-Cr Alloy in Liquid and Solid-Liquid Coexistence States
.
Mater Trans.
2002
;
43
(
5
):
1153
1160
. doi:.
10.
Liu
J
,
Ju
S
,
Ding
Y
,
Yang
R.
Size effect on the thermal conductivity of ultrathin polystyrene films
.
Appl Phys Lett.
2014
;
104
(
15
). doi:.
11.
Johan
MR
,
Suan
MSM
,
Hawari
NL
,
Ching
HA
.
Annealing effects on the properties of copper oxide thin films prepared by chemical deposition
.
Int J Electrochem Sci.
2011
;
6
(
12
):
6094
6104
. doi:.
12.
Fromhold
AT
.
double-layer oxide film formation on elemental metals by cation vacancy difusion
.
Thin Solid Films
.
1981
;
86
:
57
61
.
13.
Rätzer-Scheibe
HJ
,
Schulz
U
,
Krell
T.
The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings
.
Surf Coatings Technol
.
2006
;
200
(
18-19
):
5636
5644
. doi:.
14.
Touloukian
Y.S.
,
Powel R.W.
HCYKPG
. Thermophysical Properties of Matter. Vol
1
.
New York
;
1970
. doi:.
15.
Chen
Z
,
Boström
T
,
Nguyen
Q.
Carbon Nanotube Spectrally Selective Solar Absorbers
.
Proc EuroSun 2014 Conf.
2015
;(September 2014):
1
7
. doi:.
16.
ASTM
.
Standard Tables for Reference Solar Spectral Irradiances : Direct Normal and Hemispherical on 37 Tilted Surface
.
Am Soc Test Mater
.
2013
:
1
21
. doi:.
17.
Duffie
JA
,
Beckman
WA
.
Solar Engineering of Thermal Processes
. Third Edit. (Wiley & Sons J, ed.).
New Jersey
:
John Wiley & Sons
;
2006
.
18.
Lee
H
,
Kim
J
,
Lee
S
,
Yoon
H
,
Kang
Y
,
Park
M.
Calculation of optical efficiency for the first central-receiver solar concentrator system in Korea
.
Energy Procedia
.
2015
;
69
:
126
131
. doi:.
19.
Glatzmaier
G.
Summary Report for Concentrating Solar Power Thermal Storage Workshop - New concepts and materials for thermal energy storage and heat-transfer fluids
.
Natl Renew Energy Lab
.
2011
;(May 2011). doi:.
20.
Leon
MA
,
Kumar
S.
Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors
.
Sol Energy
.
2007
;
81
(
1
):
62
75
. doi:.
21.
Kalogirou
SA
.
Solar Thermal Collectors and Applications
. Vol
30
.;
2004
. doi:.
22.
Russell
F.
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
.
Natl Renew Energy Lab.
2003
;(October):
164
. doi:NREL/TP-550-34169.
23.
Ho
CK
,
Pacheco
JE
.
Derivation of a Levelized Cost of Coating (LCOC) Metric for Evaluation of Solar Selective Absorber Materials
.
Energy Procedia
.
2015
;
69
:
415
423
. doi:.
24.
Khamlich
S
,
Nemraoui
O
,
Mongwaketsi
N
,
Mccrindle
R
,
Cingo
N
,
Maaza
M.
Black Cr/α-Cr2O3 nanoparticles based solar absorbers
.
Phys B Phys Condens Matter
.
2012
;
407
(
10
):
1509
1512
. doi:.
25.
Burlafinger
K
,
Vetter
A
,
Brabec
CJ
.
Maximizing concentrated solar power (CSP) plant overall efficiencies by using spectral selective absorbers at optimal operation temperatures
.
Sol Energy
.
2015
;
120
:
428
438
. doi:.
26.
Moon
J
,
Kyoung Kim
T
,
VanSaders
B
, et al. 
Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system
.
Sol Energy Mater Sol Cells
.
2015
;
134
:
17
42
. doi:.
27.
Nunes
C
,
Teixeira
V
,
Prates
ML
,
Barradas
NP
,
Sequeira
AD
.
Graded selective coatings based on chromium and titanium oxynitride
.
Thin Solid Films
.
2003
;
442
(
1-2
):
173
178
. doi:.
This content is only available via PDF.