A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

1.
Nakamura
,
T.
Hydrogen production from water utilizing solar heat at high temperatures
.
Sol. Energy
19
,
467
475
(
1977
).
2.
Palumbo
,
R.
 et al 
The production of Zn from ZnO in a high-temperature solar decomposition quench process—I. The scientific framework for the process
.
Chem. Eng. Sci.
53
,
2503
2517
(
1998
).
3.
Abanades
,
S.
&
Flamant
,
G.
Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides
.
Sol. Energy
80
,
1611
1623
(
2006
).
4.
Chueh
,
W. C.
 et al 
High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria
.
Science
330
,
1797
1801
(
2010
).
5.
Furler
,
P.
 et al 
Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system
.
Energy and Fuels
26
,
7051
7059
(
2012
).
6.
Marxer
,
D. A.
 et al 
Demonstration of the entire production chain to renewable kerosene via solar-thermochemical splitting of H2O and CO2
.
Energy & Fuels
29
,
3241
3250
(
2015
).
7.
Fritzmann
,
C.
,
Lowenberg
,
J.
,
Wintgens
,
T.
&
Melin
,
T.
State-of-the-art of reverse osmosis desalination
.
Desalination
216
,
1
76
(
2007
).
8.
National Renewable Energy Laboratory
.
Concentrating solar power projects
. (
2011
). at <http://www.nrel.gov/csp/solarpaces/power_tower.cfm>
9.
Overtoom
,
R.
,
Fabricius
,
N.
&
Leenhouts
,
W. Shell
GTL, from Bench scale to World scale
.
Proc. 1st Annu. Gas Process. Symp
.
10–12 January 2009
,
Doha, Qatar
378
386
(
2009
). doi:
10.
Falter
,
C.
,
Batteiger
,
V.
&
Sizmann
,
A.
Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production
.
Environ. Sci. Technol.
50
,
470
477
(y2016).
11.
Chueh
,
W. C.
&
Haile
,
S. M.
A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation
.
Philos. Trans. A. Math. Phys. Eng. Sci.
368
,
3269
3294
(
2010
).
12.
Falter
,
C. P.
,
Sizmann
,
A.
&
Pitz-Paal
,
R.
Modular reactor model for the solar thermochemical production of syngas incorporating counter-flow solid heat exchange
.
Sol. Energy
122
,
1296
1308
(
2015
).
13.
Lapp
,
J.
,
Davidson
,
J. H.
&
Lipiński
,
W.
Efficiency of two-step solar thermochemical non-stoichiometric redox cycles withheat recovery
.
Energy
37
,
591
600
(
2012
).
14.
Krenzke
,
P. T.
&
Davidson
,
J. H.
On the Efficiency of Solar H2 and CO Production via the Thermochemical Cerium Oxide Redox Cycle: The Option of Inert-Swept Reduction
.
Energy & Fuels
150206073859007
(
2015
). doi:
15.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
&
Hogan
,
R. E.
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
.
J. Sol. Energy Eng.
130
,
041001
(
2008
).
16.
Lapp
,
J.
,
Davidson
,
J. H.
&
Lipiński
,
W.
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Cycles
.
J. Sol. Energy Eng.
135
,
031004
(
2013
).
17.
Chandran
,
R. B.
,
De Smith
,
R. M.
&
Davidson
,
J. H.
Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery
.
Int. J. Heat Mass Transf.
81
,
404
414
(
2015
).
18.
Ermanoski
,
I.
,
Siegel
,
N. P.
&
Stechel
,
E. B.
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
.
J. Sol. Energy Eng.
135
,
031002
(
2013
).
19.
Accuratus
.
Aluminum Oxide, Al2O3 Ceramic Properties
. (
2016
). at <http://accuratus.com/alumox.html>
20.
Zircar Zirconia
.
Fibrous Insulation - Type Buster M35
. (
2015
). at <http://www.zircarzirconia.com/product-literature/buster.php>
21.
Furler
,
P.
,
Scheffe
,
J. R.
&
Steinfeld
,
A.
Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor
.
Energy Environ. Sci.
5
,
6098
(
2012
).
22.
Furler
,
P.
 et al 
Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities
.
Phys. Chem. Chem. Phys.
16
,
10503
11
(
2014
).
23.
Tsotsas
,
E.
&
Martin
,
H.
Thermal conductivity of packed beds: A review
.
Chem. Eng. Process. Process Intensif.
22
,
19
37
(
1987
).
24.
Petrov
,
V. A.
Combined radiation and conduction heat transfer in high temperature fiber thermal insulation
.
Int. J. Heat Mass Transf.
40
,
2241
2247
(
1997
).
25.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
&
Yu
,
C.
Thermal performance analysis of porous media receiver with concentrated solar irradiation
.
Int. J. Heat Mass Transf.
62
,
247
254
(
2013
).
26.
Howell
,
J. R.
,
Siegel
,
R.
,
Mengüc
,
M.
&
Pinar
,
R.
Thermal Radiation Heat Transfer
. (
CRC Press
,
2011
).
27.
Suter
,
S.
,
Steinfeld
,
A.
&
Haussener
,
S.
Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing
.
Int. J. Heat Mass Transf.
78
,
688
698
(
2014
).
28.
Zhang
,
B.
,
Zhao
,
S.
,
He
,
X.
&
Du
,
S.
High Temperature Thermal Physical Properties of High-alumina Fibrous Insulation
.
J. Mater. Sci. Technol.
23
,
860
864
(
2007
).
29.
Chueh
,
W. C.
&
Haile
,
S. M.
A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation
.
Philos Trans. A Math Phys Eng Sci
368
,
3269
3294
(
2010
).
30.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
&
Steinfeld
,
A.
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles
.
J. Therm. Sci. Eng. Appl.
1
,
041002
(
2009
).
31.
Special Metals
.
Inconel Alloy 600
. (
2015
). at <www.specialmetals.com/documents/Inconelalloy600.pdf>
32.
Touloukian
,
Y. S.
&
DeWitt
,
D. P.
Thermophysical Properties of Matter - The TPRC Data Series--Vol.8 Thermal Radiative Properties - Nonmetallic Solids
. (
CINDAS/Purdue University
,
1972
).
33.
Furler
,
P.
Solar thermochemical CO2 and H2O splitting via ceria redox reactions
. (Dissertation,
ETH Zürich
,
2014
). doi:
34.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
&
Klemens
,
P. G.
Thermophysical Properties of Matter - The TPRC Data Series--Vol.2. Thermal Conductivity - Nonmetallic Solids
. (
CINDAS/Purdue University
,
1971
).
35.
U.S. Environmental Protection Agency
.
Toxicological Review Cerium Oxide and Cerium Compounds
. (
2009
).
36.
Riess
,
I.
,
Ricken
,
M.
&
Noelting
,
J.
Specific heat of non-stoichiometric ceria (CeOy
).
Solid State Ionics
18-19
,
725
726
(
1986
).
37.
Kleiber
,
M.
&
Joh
,
R.
VDI-Wärmeatlas, Kapitel D
. (
2013
). doi: