The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model’s constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

1.
REN21
, “
Renewables 2016 - Global Status Report
”,
2016
.
2.
G.
Zanganeh
,
R.
Khanna
,
C.
Walser
,
A.
Pedretti
,
A.
Haselbacher
,
A.
Steinfeld
, “
Experimental and numerical investigation of combined sensible-latent heat for thermal energy storage at 575 °C and above
”,
Solar Energy
114
,
77
90
(
2015
).
3.
H.K.
Versteeg
,
W.
Malalasekera
, “
An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach
”,
Harlow, England
:
Longman Scientific and Technical
, (
1995
).
4.
T.H.
Shih
,
W.W.
Liou
,
A.
Shabbir
,
Z.
Yang
,
J.
Zhu
, “
A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation
,”
Computers and Fluids
,
24
(
3
),
227
238
(
1994
).
5.
J.
Tu
,
G.H.
Yeoh
,
C.
Liu
, “
Computational Fluid Dynamics – A practical approach
”, (
2008
).
6.
D.A.
Nield
and
A.
Bejan
,
Convection in Porous Media
, (
Springer
,
2006
).
7.
ANSYS
, “
FLUENT - Theory guide
” (
2012
).
8.
F.P.
Incropera
,
D.
Dewitt
,
T.
Bergman
,
A.
Lavine
, “
Fundamentals of heat and mass transfer
”, (
2007
).
9.
A.E.
Scheidegger
, “
The phisics of fluid flow through porous media. Third edition
”, (
1974
).
10.
D.E.
Beasley
,
J.A.
Clark
, “
Transient response of a packed for thermal energy storage
”,
J. Heat Mars Transfer.
21
(
9
),
1659
1669
(
1984
).
11.
Verein Deutscher
Ingenieure
, “
VDI Heat Atlas - Second edition
”, (
2010
).
12.
A.M.
Ribeiro
,
P.
Neto
,
C.
Pinho
, “
Mean porosity and pressure drop measurements in packed beds of monosized spheres: Side wall effect
”,
Int. Review of Chemical Engineering
2
(
1
),
40
46
, (
2010
).
13.
M.L.
Hunt
,
C.L.
Tien
, “
Non-darcian flow, heat and mass transfer in catalytic packed-bed reactors
.”
Chem. Eng. Sci.
45
(
1
),
55
63
, (
1990
).
14.
D.B.
Ingham
,
I.
Pop
, “
Transport Phenomena in Porous Media
”, (
1998
).
15.
D.
Vortmeyer
,
J.
Schuster
, “
Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method
Chem. Eng. Sci.
38
,
1691
1699
, (
1983
).
16.
S.
Yagi
,
D.
Kunii
, “
Studies on effective thermal conductivities in packed beds
”,
A.I.Ch.E. J.
3
(
3
),
373
381
, (
1957
).
17.
D.
Kunii
,
J.M.
Smith
, “
Heat transfer characteristics of porous rocks
”,
A.I.Ch.E. Journal
,
6
(
1
),
71
78
, (
1960
).
18.
G.
Zanganeh
,
A.
Pedretti
,
S.
Zavattoni
,
M.
Barbato
,
A.
Steinfeld
, “
Packed-bed thermal storage for concentrated solar power – pilot-scale demonstration and industrial-scale design
”,
Sol. Energy
86
(
10
),
3084
3098
, (
2012
)
19.
A.S.
Gupta
,
G.
Thodos
, “
Direct analogy between mass and heat transfer to beds of spheres
”,
AIChE J
.
9
(
6
),
751
754
, (
1963
).
20.
N.
Wakao
,
S.
Kaguei
, “
Heat and mass transfer in packed beds
”, (
1982
).
21.
D.
Poirier
,
M.
Salcudean
, “
On numerical methods used in mathematical modelling of phase change in liquid metals
”,
ASME Journal of Heat Transfer
110
,
562
70
, (
1988
).
22.
L.
Geissbühler
,
M.
Kolman
,
G.
Zanganeh
,
A.
Haselbacher
,
A.
Steinfeld
, “
Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage
”,
Applied Thermal Eng.
101
,
657
668
, (
2016
).
23.
A.
Zukauskas
, “
Heat Transfer from Tubes in Cross Flow
”,
Advances in Heat Transfer
8
, (
1972
).
This content is only available via PDF.