Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 – 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.

1.
D.
Kearney
,
U.
Herrmann
,
P.
Nava
,
B.
Kelly
,
R.
Mahoney
,
J.
Pacheco
,
R.
Cable
,
N.
Potrovitza
,
D.
Blake
and
H.
Price
,
J. Sol. Energ. Eng.
125
,
170
176
(
2003
).
2.
G.
Glatzmaier
, “Materials for Sensible & Phase Change Thermal Storage”, in
Workshop on New Concepts and Materials for Thermal Energy Storage and Heat Transfer Fluids for CSP
,
National Renewable Energy Laboratory
,
Golden, CO
(
2011
).
3.
G.Y.
Lai
, “High Temperature Corrosion of Engineering Alloys”, edited by
Metals Park, OH, USA
,
ASM International
, (
1990
).
4.
N.
Eliaz
,
G.
Shemesh
and
R.M.
Latanision
,
Eng. Fail. Anal.
,
9
,
31
43
(
2002
).
5.
P.F.
Tortorelli
,
P.S.
Bishop
and
J.R.
DiStefano
, “Selection of Corrosion-Resistant Materials for Use in Molten Nitrate Salts”,
Oak Ridge National Lab. Report. TN
(
1989
).
6.
A.G.
Fernández
,
M.I.
Lasanta
, and
F. J.
Pérez
,
Oxid. Met.
78
,
329
348
(
2012
).
7.
A.M.
Kruizenga
,
D.D.
Gill
,
M.
LaFord
, “Materials Corrosion of High Temperature Alloys Immersed in 600°C Binary Nitrate Salt”,
Sandia Report
,
SAND
2013
2526
, (
2013
).
8.
A.G.
Fernández
,
A.
Rey
,
I.
Lasanta
,
S.
Mato
,
M. P.
Brady
and
F. J.
Pérez
,
Mater. Corro.
65
,
267
275
(
2014
).
9.
M.
Spiegel
and
J.
Mentz
,
Mater. Corro.
65
,
276
281
(
2014
).
10.
A.G.
Fernández
,
M.
Cortes
,
E.
Fuentealba
and
F. J.
Pérez
,
Renew. Energ.
80
,
177
183
(
2015
).
11.
A. S.
Dorcheh
,
R. N.
Durham
and
M. C.
Galetz
,
Sol. Energ. Mater. Sol. Cells
144
,
109
116
(
2016
).
12.
A. S.
Dorcheh
and
M. C.
Galetz
,
Sol. Energ. Mat. Sol. Cells
146
,
8
15
(
2016
).
13.
A.
Agüero
,
I.
Baraibar
,
V.
González
,
R.
Muelas
and
D.
Plana
,
Oxid. Met.
85
,
263
281
(
2016
).
14.
A.
Agüero
,
K.
Spiradek
,
M.
Gutiérrez
,
R.
Muelas
and
S.
Höfinger
,
Mater. Forum
595-598
pp.
251
259
(
2008
).
15.
A.G.
Fernández
,
A.
Rey
,
I.
Lasanta
,
S.
Mato
,
M. P.
Brady
and
F. J.
Pérez
,
Mater. Sci. Forum
369-372
,
759
766
(
2001
).
16.
A.
Agüero
,
M.
Gutiérrez
and
R.
Muelas
,
Surf. Eng.
, published online (
2016
).
17.
A.
Agüero
,
M.
Gutiérrez
,
L.
Korcakova
,
T.T.M.
Nguyen
,
B.
Hinnemann
and
S.
Saadi
,
Oxid. Met.
76
,
23
42
(
2011
).
18.
S.H.
Goods
, and
R.W.
Bradshaw
,
J. Mater. Eng. Perform.
13
,
78
87
(
2004
).
19.
O.J.
Kleppa
, and
S.V.
Meschel
,
J. Phys. Chem.
67
,
668
671
(
1963
).
20.
M.
Medrano
,
A.
Gil
,
I.
Martorell
,
X.
Potau
, and
L.F.
Cabeza
,
Renew. Sust. Energ. Rev.
14
,
56
72
(
2010
).
21.
M.
Zimnol
,
A.
Graff
,
H.
Sieber
,
S.
Senz
,
S.
Schmidt
,
R.
Mattheis
, and
D.
Hesse
,
Solid State Ion.
101-103
,
667
672
(
1997
).
22.
J.
Ehlers
,
D.J.
Young
,
E.J.
Smaardijk
,
A.K.
Tyagi
,
H.J.
Penkalla
,
L.
Singheiser
and
W.J.
Quadakkers
,
Corro. Sci.
48
,
3428
3454
(
2006
).