In this paper, we develop a solution for the shape of an axisymmetric inhomogeneous sessile-drop. We assume that the volume and the radius contact-line of the drop were known. In order to determine the shape of the drop, here we use the variational calculus approach to minimize the total energy. The present approach is proposed to obtain numerical solution efficiently. For the case of a homogenous sessile-drop, we compare our results to the well-known numerical solutions of the Young-Laplace equation and both results are quite in agreement.

1.
O. I.
del Rio
and
A. W.
Neumann
,
Journal of Colloid and Interface Science
196
,
136
147
(
1997
).
2.
M.
Hoorfar
and
A. W.
Neumann
,
Advances in Colloid and Interface Science
121
,
25
49
(
2006
).
3.
R.
Finn
,
Equilibrium Capillary Surfaces
(
New York
springer-Verlag
,
1986
).
4.
A. K.
Chester
,
J. Fluid Mechanics
81
,
609
624
(
1977
).
5.
F. K.
Skinner
,
Y.
Rotenberg
, and
A. W.
Neumann
,
Journal of Colloid and Interface Science
, vol.,
25
34
(
1989
).
6.
Rienstra
,
Journal of Engineering Mathematics
24
,
193
202
(
1990
).
7.
Jeffrey S.
Allen
,
Journal of Colloid and Interface Science
261
,
481
489
(
2003
).
8.
Stalder
,
Colloids and Surfaces
.
A Physico chem. Eng. Aspects
364
,
72
81
(
2010
).
9.
L. D.
Landau
and
E. M.
Lifshitz
.
Fluid Mechanics
(
U. K.
,
Pergamon press
,
1987
).
10.
K.
Svadlenka
and
S.
Omata
, “
Modelling and Analysis of Drolet Motion on a Plane
”.
Proceeding of the Czech-Japanese Seminar in Applied Mathematics
2008
, pp.
60
71
.
11.
K.
Yulianti
,
A. Y.
Gunawan
,
E.
Soewono
and
L.
Mucharam
. “A New Approach for Modeling of the Surfactant Effect on the Sessile Drop Motion”. (
American Institute of Physics (AIP) Conference Proceedings
. Vol
1677
,
2015
), pp.
030009.1
030009.4
.
This content is only available via PDF.