We propose a fast method to automatically pick protein particles in cryo-EM micrographs, which is now completed manually in practice. Our method is based on Fast R-CNN, with sliding window as the regions proposal solution. To reduce the false positive detections, we set a single class for the major contaminant ice, and pick out all the ice particles in the whole datasets. Tests on the recently-published cryo-EM data of three proteins have demonstrated that our approach can automatically accomplish the human-level particle picking task, and we successfully reduce the test time from 1.5 minutes of previous deep learning method to 2 seconds without any recall or precision losses. Our program is available under the MIT License at https://github.com/xiao1fan/FastParticlePicker.

1.
Y.
Cheng
,
N.
Grigorieff
,
P. A.
Penczek
, and
T.
Walz
.
A primer to single-particle cryo-electron microscopy
.
Cell
,
161
(
3
):
438
449
,
2015
.
2.
X. C.
Bai
,
G.
McMullan
, and
S. H. W.
Scheres
.
How cryo-em is revolutionizing structural biology
.
Trends in Biochemical Sciences
,
40
(
1
):
49
57
,
2015
.
3.
C. Y.
Yan
,
J.
Hang
,
R. X.
Wan
,
M.
Huang
,
C. C. L.
Wong
, and
Y. G.
Shi
.
Structure of a yeast spliceosome at 3.6-angstrom resolution
.
Science
,
349
(
6253
):
1182
1191
,
2015
.
4.
L. F.
Sun
,
L. Y.
Zhao
,
G. H.
Yang
,
C. Y.
Yan
,
R.
Zhou
,
X. Y.
Zhou
,
T.
Xie
,
Y. Y.
Zhao
,
S. J.
Wu
,
X. M.
Li
, and
Y. G.
Shi
.
Structural basis of human gamma-secretase assembly
.
Proceedings of the National Academy of Sciences of the United States of America
,
112
(
19
):
6003
6008
,
2015
.
5.
M. F.
Liao
,
E. H.
Cao
,
D.
Julius
, and
Y. F.
Cheng
.
Structure of the trpv1 ion channel determined by electron cryo-microscopy
.
Nature
,
504
(
7478
):
107
–+,
2013
.
6.
F.
Wang
,
H. C.
Gong
,
G. C.
Liu
,
M. J.
Li
,
C. Y.
Yan
,
T.
Xia
,
X. M.
Li
, and
J. Y.
Zeng
.
Deeppicker: A deep learning approach for fully automated particle picking in cryo-em
.
Journal of Structural Biology
,
195
(
3
):
325
336
,
2016
.
7.
R.
Norousi
,
S.
Wickles
,
C.
Leidig
,
T.
Becker
,
V. J.
Schmid
,
R.
Beckmann
, and
A.
Tresch
.
Automatic postpicking using mappos improves particle image detection from cryo-em micrographs
.
Journal of Structural Biology
,
182
(
2
):
59
66
,
2013
.
8.
R.
Langlois
,
J.
Pallesen
,
J. T.
Ash
,
D. N.
Ho
,
J. L.
Rubinstein
, and
J.
Frank
.
Automated particle picking for low-contrast macromolecules in cryo-electron microscopy
.
Journal of Structural Biology
,
186
(
1
):
1
7
,
2014
.
9.
R. M.
Glaeser
.
Historical background: why is it important to improve automated particle selection methods?
Journal of Structural Biology
,
145
(
1-2
):
15
18
,
2004
.
10.
N.
Volkmann
.
An approach to automated particle picking from electron micrographs based on reduced representation templates
.
Journal of Structural Biology
,
145
(
1-2
):
152
156
,
2004
.
11.
V.
Kumar
,
J.
Heikkonen
,
P.
Engelhardt
, and
K.
Kaski
.
Robust filtering and particle picking in micrograph images towards 3d reconstruction of purified proteins with cryo-electron microscopy
.
Journal of Structural Biology
,
145
(
1-2
):
41
51
,
2004
.
12.
R. J.
Hall
and
A.
Patwardhan
.
A two step approach for semi-automated particle selection from low contrast cryo-electron micrographs
.
Journal of Structural Biology
,
145
(
1-2
):
19
28
,
2004
.
13.
A. M.
Roseman
.
Particle finding in electron micrographs using a fast local correlation algorithm
.
Ultramicroscopy
,
94
(
3-4
):
225
236
,
2003
.
14.
W. V.
Nicholson
and
R. M.
Glaeser
.
Review: Automatic particle detection in electron microscopy
.
Journal of Structural Biology
,
133
(
2-3
):
90
101
,
2001
.
15.
J. H.
Zhao
,
M. A.
Brubaker
, and
J. L.
Rubinstein
.
Tmacs: A hybrid template matching and classification system for partially-automated particle selection
.
Journal of Structural Biology
,
181
(
3
):
234
242
,
2013
.
16.
J.
Vargas
,
V.
Abrishami
,
R.
Marabini
,
J. M.
de la Rosa-Trevin
,
A.
Zaldivar
,
J. M.
Carazo
, and
C. O. S.
Sorzano
.
Particle quality assessment and sorting for automatic and semiautomatic particle-picking techniques
.
Journal of Structural Biology
,
183
(
3
):
342
353
,
2013
.
17.
R.
Langlois
,
J.
Pallesen
, and
J.
Frank
.
Reference-free particle selection enhanced with semi-supervised machine learning for cryo-electron microscopy
.
Journal of Structural Biology
,
175
(
3
):
353
361
,
2011
.
18.
P.
Arbelaez
,
B. G.
Han
,
D.
Typke
,
J.
Lim
,
R. M.
Glaeser
, and
J.
Malik
.
Experimental evaluation of support vector machine-based and correlation-based approaches to automatic particle selection
.
Journal of Structural Biology
,
175
(
3
):
319
328
,
2011
.
19.
N. R.
Voss
,
C. K.
Yoshioka
,
M.
Radermacher
,
C. S.
Potter
, and
B.
Carragher
.
Dog picker and tiltpicker: Software tools to facilitate particle selection in single particle electron microscopy
.
Journal of Structural Biology
,
166
(
2
):
205
213
,
2009
.
20.
C. O. S.
Sorzano
,
E.
Recarte
,
M.
Alcorlo
,
J. R.
Bilbao-Castro
,
C.
San-Martin
,
R.
Marabini
, and
J. M.
Carazo
.
Automatic particle selection from electron micrographs using machine learning techniques
.
Journal of Structural Biology
,
167
(
3
):
252
260
,
2009
.
21.
T. R.
Shaikh
,
R.
Trujillo
,
J. S.
LeBarron
,
W. T.
Baxter
, and
J.
Frank
.
Particle-verification for single-particle, reference-based reconstruction using multivariate data analysis and classification
.
Journal of Structural Biology
,
164
(
1
):
41
48
,
2008
.
22.
J. Z.
Chen
and
N.
Grigorieff
.
Signature: A single-particle selection system for molecular electron microscopy
.
Journal of Structural Biology
,
157
(
1
):
168
173
,
2007
.
23.
C.
Szegedy
,
W.
Liu
,
Y. Q.
Jia
,
P.
Sermanet
,
S.
Reed
,
D.
Anguelov
,
D.
Erhan
,
V.
Vanhoucke
, and
A.
Rabinovich
.
Going deeper with convolutions
.
2015 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr)
, pages
1
9
,
2015
.
24.
M. D.
Zeiler
and
R.
Fergus
.
Visualizing and understanding convolutional networks
.
Computer Vision - Eccv 2014, Pt I
,
8689
:
818
833
,
2014
.
25.
Hinton
G E.
Krizhevsky
A
SI.
Imagenet classification with deep convolutional neural networks
.
Advances in neural information processing systems
, pages
1097
1105
,
2012
.
26.
K. M.
He
,
X. Y.
Zhang
,
S. Q.
Ren
, and
J.
Sun
.
Spatial pyramid pooling in deep convolutional networks for visual recognition
.
Ieee Transactions on Pattern Analysis and Machine Intelligence
,
37
(
9
):
1904
1916
,
2015
.
27.
R.
Girshick
. Fast r-cnn.
2015 Ieee International Conference on Computer Vision (Iccv)
, pages
1440
1448
,
2015
.
28.
R.
Girshick
,
J.
Donahue
,
T.
Darrell
, and
J.
Malik
.
Rich feature hierarchies for accurate object detection and semantic segmentation
.
2014 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr)
, pages
580
587
,
2014
.
29.
Yangqing
Jia
,
Evan
Shelhamer
,
Jeff
Donahue
,
Sergey
Karayev
,
Jonathan
Long
,
Ross
Girshick
,
Sergio
Guadarrama
, and
Trevor
Darrell
.
Caffe: Convolutional architecture for fast feature embedding
. In
22nd ACM international conference on Multimedia
, pages
675
678
. ACM,
2014
.
31.
M. F.
Liao
,
E. H.
Cao
,
D.
Julius
, and
Y. F.
Cheng
,
2013
. https://www.ebi.ac.uk/pdbe/emdb/empiar/.
This content is only available via PDF.