Stratospheric poor ozone air masses related to the polar ozone hole overpass subpolar regions in the Southern Hemisphere during spring and summer seasons, resulting in increases of surface Ultraviolet Index (UVI). The impact of these abnormal increases in the ultraviolet radiation could be overestimated if clouds are not taking into account. The aim of this work is to determine the percentage of cases in which cloudiness attenuates the high UV radiation that would reach the surface in low total ozone column situations and in clear sky hypothetical condition for Río Gallegos, Argentina. For this purpose, we analysed UVI data obtained from a multiband filter radiometer GUV-541 (Biospherical Inc.) installed in the Observatorio Atmosférico de la Patagonia Austral (OAPA-UNIDEF (MINDEF – CONICET)) (51 ° 33’ S, 69 ° 19’ W), Río Gallegos, since 2005. The database used covers the period 2005-2012 for spring seasons. Measured UVI values are compared with UVI calculated using a parametric UV model proposed by Madronich (2007), which is an approximation for the UVI for clear sky, unpolluted atmosphere and low surface albedo condition, using the total ozone column amount, obtained from the OMI database for our case, and the solar zenith angle. It is observed that ∼76% of the total low ozone amount cases, which would result in high and very high UVI categories for a hypothetical (modeled) clear sky condition, are attenuated by clouds, while 91% of hypothetical extremely high UVI category are also attenuated.

1.
Chubachi
,
S.
Preliminary result of ozone observations at Syowa station from February 1982 to January 1983
”, (
Mem. Natl. Inst. Polar Res., Spec. Issue Jpn.
,
1984
),
34
, pp.
13
19
,.
2.
Farman
,
J. C.
,
B. G.
Gardiner
and
J. D.
,
Shanklin
, “
Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction
”, (
Nature
,
1985
)
315
, pp.
207
210
, (1985).
3.
J.
Salvador
;
E.
Wolfram
;
R.
D’elia
;
F.
Orte
;
N.
Cortez
,
E.
Quel
, “Medición del espesor óptico de nubes en Río Gallegos”, (
Anales AFA
,
Tandil
,
2008
) vol.
20
, pp.
251
254
4.
Madronich
,
S.
, “
Analytic formula for the clear-sky UV index
”. (
Photochemistry and Photobiology
,
2007
),
83
, pp.
1537
1538
5.
Dahlback
, “
Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments
”, (
Appl. Opt.
,
1996
), vol.
35
, pp.
6514
6521
.
6.
J.
Salvador
,
E.
Wolfram
,
J.
Pedroni
,
A.
Rosales
,
J.
Tocho
,
E.
Quel
, “
Reconstrucción de espectros de irradiancia solar global UV a partir de mediciones con radiómetro de banda angosta
”, Vol
19
, No
1
(
2008
)
7.
2002 Global Solar UV Index: A Practical Guide
World Health Organisation (WHO), World Meteorological organisation (WMO), United Nations Environment Program (UNEP), and International Commission on Non-Ionising Radiation Protection (ICNRP) (Geneva)
8.
R. J.
van der A
,
M. A. F.
Allaart
, and
H. J.
Eskes
, “
Multi sensor reanalysis of total ozone
”, (
Atmos. Chem. Phys.
,
2010
), vol.
10
, pp.
11277
11294
.
This content is only available via PDF.