Dehumidification by desiccant is a new application in air-conditioning system. This technology is providing important advantages in solving many problems and brings environmentally friendly products. Desiccants are natural substances that are capable of showing a strong attraction for water vapour and can be regenerated. They can undergo continuous cycles. An experimental study is carried out on successive phases of absorption/regeneration, during 7 days by using LiCl desiccant and on separate phases. The effect of climatic parameters on moisture removal rate and salt concentration on absorption and regeneration processes is discussed. The results show that higher air humidity gives a higher mass transfer potential then a higher moisture rate absorbed dm/dt. The decrease of salt concentration affects the dm/dt and vapour pressure. Also, these results show that at regeneration temperature, the amount of water desorbed is nearly equal to the amount of water absorbed (equilibrium condition) for a complete cycle. The amount of 7.87 mg of water vapor can be absorbed in the first hour of absorption cycle for 12.6144 mg at 50% of relative humidity, and 7.004mg for 36.31 mg of initial mass subjected at 70% RH. The LiCl desiccant is able to return to almost its original concentration 31.39% during regeneration phase. Also, LiCl desiccant is able to be regenerated at low temperature 40°C which can be easily obtained by using solar energy. Then, the LiCl is a good hygroscopic material for using in liquid desiccant air-conditioning system.

1.
L.
Mei
,
Y. J.
Dai
,
Renewable and Sustainable Energy Review
,
12
,
662
689
(
2008
).
2.
Li
Xiu-Wei
,
Z.
Xiao-Song
,
W.
Geng
,
C.
Rong-Quan
.
Solar Energy
,
82
,
1161
1171
(
2008
).
3.
Y.
Yongga
,
Z.
Xiaosong
,
International Journal of Heat and Mass Transfer
,
51
,
3287
3297
(
2008
).
4.
K.
Gommed
,
G.
Grossman
,
Journal of Solar Energy Engineering
,
126
,
879
885
(
2004
).
5.
A.
Lowenstein
,
AIL Research, Inc. ASME International Solar Energy Conference (ISEC 2006)
,
Denver, Colorado
- July 8–13 (
2006
).
6.
A.
Ali
,
K.
Vafai
,
Int. Journal. Heat Mass Transfer
,
47
,
1745
1760
(
2004
).
7.
X. H.
Liu
,
Y.
Jiang
,
X. M.
Chang
,
Renewable Energy
,
32
,
1623
1636
(
2007
).
8.
J.
Coellner
,
Workshop Chattanooga, TN
; June (
1986
).
9.
R. M.
Lazzarin
,
A.
Gasparella
,
G. A.
Longo
,
International Journal of Refrigeration
,
22
,
334
347
(
1999
).
10.
F.
Nelson
,
D. Y.
Goswami
,
Sol Energy.
,
72
(
4
),
351
61
(
2002
).
11.
A. M.
Hamed
,
Renewable Energy
,
28
,
1587
1596
(
2003
).
12.
A.
Giovanni
,
A.
Longo
,
A.
Gasparella
,
Int. Ref. - Air Conditioning Conference at Purdue
, June (
2004
).
13.
G. A.
Longo
,
A.
Gasparella
,
Int. J. Heat and Mass Transfer
,
48
,
5240
5254
(
2005
).
14.
A. M.
Hamed
,
A.
Khalil
,
A. E.
Kabeel
,
M. M.
Bassuoni
,
A. M.
Elzahaby
,
Renewable Energy
,
30
,
1689
1712
(
2005
).
15.
L.
Yimo
,
W.
Meng
,
Y.
Hongxing
,
L.
Lin
,
P.
Jinqing
,
Building and Environment
,
93
,
210
220
(
2015
).
16.
Y.
Fang
,
C.
Qun
,
Int. J. Heat - Mass Transfer.
,
87
,
189
200
(
2015
).
17.
Y.
Ouyang
,
L. Z.
Zhang
,
International Journal of Heat - Mass Transfer.
,
93
,
23
40
(
2016
).
This content is only available via PDF.