A procedure for the identification of the constitutive model of non-standard materials is presented. The material constitutive equation is modeled with a generalized Kelvin model of n-order expressed in the form of a rational polynomial function in the frequency domain. A least square error formulation that makes use of orthogonal polynomials is employed to identify the model parameters from dynamical measurements made on test specimens. Dynamical mechanical measurements made on Polytetrafluoroethylene samples at variable excitation fixed frequency are used to test the devised fitting procedure. Fit results obtained by means of different model order are compared and discussed.
REFERENCES
1.
A. S.
Nowick
, B. S.
Berry
, Anelastic Relaxation in Crystalline Solids
(Academic Press Inc.
) 1972
.2.
3.
W. N.
Findley
, J. S.
Lai
, K.
Onaran
, Creep and Relaxation of Nonlinear Viscoelastic Materials
(Dover publications Inc.
, New York
) 1989
.4.
C. M. A.
Vasquez
, R. A. S.
Moreira
, J. D.
Rodriguez
, J. Adv. Res. Mech. Eng.
, 1
(2
), 76
–95
(2010
).5.
L. E. S.
Ramirez
, C. F. M.
Coimbra
, Ann. Phys.
, 16
(7-8
) 543
–552
(2007
).6.
S.
Timoshenko
, D. H.
Young
, W.
Weaver
Jr., Vibration Problems in Engineering
(John Wiley & Sons Inc.
) 1974
.7.
Kevin P.
Menard
, Dynamic Mechanical Analysis: A practical Introduction
, (CRC Press
) 2008
.8.
J.
Ferry
, Viscoelastic Properties of Polymers Second Edition
(J. Wiley and Sons
) 1980
.9.
Reed
et al., U.S. Patent No.5, 710426 (20 January 1998
).10.
M. H.
Richardson
, D. L.
Formenti
, “Parameter Estimation From Frequency Response Measurements Using Rational Fraction Polynomials
”, Presented At 1ˢᵗ IMAC Conference
, Orlando, FL
, 1982
.11.
L. G.
Kelly
, Handbook of Numerical Methods and Applications
(Addison Wesley Publishing Company
) 1967
.12.
G. E.
Forsythe
, J. Soc. Indust. Appl. Math.
, 5
(2
) 74
–85
(1957
).
This content is only available via PDF.
© 2017 Author(s).
2017
Author(s)