We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag−1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.

1.
R.
Kötz
and
M.
Carlen
,
Electrochim. Acta
45
,
2483
(
2000
).
2.
P.
Sharma
and
T. S.
Bhatti
,
Energy Convers. Manage.
51
,
2901
(
2010
).
3.
A.
Burke
,
Electrochim. Acta
53
,
1083
(
2007
).
4.
T.
Hutchinson
,
S.
Burgess
, and
G.
Herrmann
,
Appl. Energy
119
,
314
(
2014
).
5.
S. F.
Tie
and
C. W.
Tan
,
Renew. Sust. Energy Rev.
20
,
82
(
2013
).
6.
J.
Kang
,
S. H.
Jayaram
,
J.
Rawlins
, and
J.
Wen
,
Electrochim. Acta
144
,
200
(
2014
).
7.
A. G.
Pandolfo
and
A. F.
Hollenkamp
,
J. Power Sources
157
,
11
(
2006
).
8.
D.
Qu
and
H.
Shi
,
J. Power Sources
74
,
99
(
1998
).
9.
Y.
Kibi
,
T.
Saito
,
M.
Kurata
,
J.
Tabuchi
, and
A.
Ochi
,
J. Power Sources
60
,
219
(
1996
).
10.
R.
Farma
,
M.
Deraman
,
Awitdrus
,
I. A.
Talib
,
R.
Omar
,
J. G.
Manjunatha
,
M. M.
Ishak
,
N. H.
Basri
, and
B. N. M.
Dolah
,
Int. J. Electrochem. Sci.
8
,
257
(
2013
).
11.
A.
Lewandowski
and
M.
Galinski
,
J. Power Sources
173
,
822
(
2007
).
12.
S.
Hu
,
R.
Rajamani
, and
X.
Yu
,
Appl. Phys. Lett.
100
,
104103
(
2012
).
13.
X.
Du
,
P.
Guo
,
H.
Song
, and
X.
Chen
,
Electrochim. Acta
55
,
4812
(
2010
).
14.
Y.
Suda
,
K.
Maruyama
,
T.
Iida
,
H.
Takikawa
,
H.
Ue
,
K.
Shimizu
, and
Y.
Umeda
,
Crystals
5
,
47
(
2015
).
15.
T.
Ikeda
,
S.
Kaida
,
T.
Satou
,
Y.
Suda
,
H.
Takikawa
,
H.
Tanoue
,
S.
Oke
,
H.
Ue
,
T.
Okawa
,
N.
Aoyagi
, and
K.
Shimizu
,
Jpn. J. Appl. Phys.
50
,
01AF13
(
2011
).
16.
Y.
Okabe
,
Y.
Suda
,
H.
Tanoue
,
H.
Takikawa
,
H.
Ue
, and
K.
Shimizu
,
Electrochim. Acta
131
,
207
(
2014
).
17.
N.
Nanbu
,
K.
Suzuki
,
N.
Yagi
,
M.
Sugahara
,
M.
Takehara
,
M.
Ue
, and
Y.
Sasaki
,
Electrochem.
75
,
607
(
2007
).
18.
J.
Jiang
,
Q.
Gao
,
K.
Xia
, and
J.
Hu
,
Micropor. Mesopor. Mater.
118
,
28
(
2009
).
19.
J.
Wang
,
M.
Chen
,
C.
Wang
,
J.
Wang
, and
J.
Zheng
,
J. Power Sources
196
,
550
(
2011
).
20.
K.
Naoi
,
Y.
Asakawa
,
H.
Watanabe
,
J.
Yasuhara
,
D.
Yonekura
, and
W.
Naoi
,
Electrochem.
81
,
823
(
2013
).
21.
K.
Kikuchi
,
T.
Yasue
,
R.
Yamashita
,
S.
Sakuragawa
,
M.
Sudoh
, and
M.
Itagaki
,
Electrochem.
81
,
828
(
2013
).
22.
M.
Zhang
,
X.
Jin
, and
Q.
Zhao
,
New Carbon Mater.
29
,
89
(
2014
).
23.
H. G.
Li
,
Y. G.
Wang
,
C. X.
Wang
, and
Y. Y.
Xia
,
J. Power Sources
185
,
1557
(
2008
).
24.
N. I. T.
Ramli
,
S. A.
Rashid
,
Y.
Sulaiman
,
M. S.
Mamat
,
S. A. M.
Zobir
, and
S.
Krishnan
,
J. Power Sources
328
,
195
(
2016
).
This content is only available via PDF.