Organic-inorganic hybrid heterojunction solar cells containing CH3NH3PbI3 perovskite compound were fabricated using TiO2 as an electronic transporting layer and spirobifluorence as a hole-transporting layer. The purpose of the present study is to investigate a role of the hole-transporting layer on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells. The X-ray diffraction identified crystal structures of the perovskite layer in the solar cells. Optical microscopy showed different surface morphologies, and the perovskite structures on the TiO2 mesoporous structure depended on addition of phthalocyanine into the hole-transporting layer. The photovoltaic properties and hole-transporting behavior was depending on carrier mobility, electron structures of the perovskite crystal and band gaps related with the photovoltaic parameters. Energy diagram and photovoltaic mechanism of the perovskite solar cells using hole-transporting layers were discussed by experimental results. Perovskite based solar cells using phthalocyanines as hole-transporting layers have advantages to provide a high photovoltaic performance with a wide region of optical absorption.

1.
J.
Seo
,
N. J.
Jeon
and
H-W.
Shin
,
Adv. Energy. Mater.
20
,
1501320
(
2015
).
2.
J. J.
Guo
,
X. F.
Meng
,
J.
Niu
,
Y.
Yin
,
M. M.
Han
,
X. H.
Ma
,
G. S.
Song
and
F.
Zhang
,
Synth. Metals
220
,
462
468
(
2016
).
3.
J. H.
Im
,
I. H.
Jang
,
N.
Pellet
,
M.
Grӓtzel
and
N. G.
Park
Nature nanotechnology
9
,
927
932
(
2014
).
4.
F. Javier
Ramos
,
M.
Ince
,
M.
Urbani
,
A.
Abate
,
M.
Grӓtzel
,
S.
Ahmad
,
T.
Torres
and
M. K.
Nazeeruddin
,
Dalton Trans.
44
,
10847
10851
(
2015
).
5.
H.
Li
,
K.
Fu
,
A.
Hagfeldt
,
M.
Gratzel
,
S. G.
Mhaisalkar
and
A. C.
Grimsdale
,
Angew. Chem.
53
,
4085
4088
(
2014
).
6.
S.
Kazim
,
F. Javier
Ramos
and
P.
Gao
,
Energy Environ. Sci.
6
,
1816
1823
(
2015
).
7.
W.
Ke
,
D
Zhao
, and
C. R.
Grice
,
J. Mater. Chem. A
,
47
,
23888
23894
(
2015
).
8.
G.
Sfyri
,
C. V.
Kumar
and
G.
Sabapathi
,
RSC Adv.
85
,
69813
69818
(
2015
).
9.
G.
Sfyri
,
C. V.
Kumar
and
Y-L.
Wang
,
Appl. Surf. Sci.
360
,
767
771
(
2016
).
10.
J. H.
Kim
,
P. W.
Liang
,
S. T.
Williams
,
N.
Cho
,
C. C.
Chueh
,
M.S.
Glaz
,
D. S.
Ginger
and
A. K.-Y.
Jen
,
Adv. Mater.
27
,
695
701
(
2014
).
11.
M.
Sun
,
S.
Wang
,
Y.
Xiao
,
Z.
Song
and
X.
Li
,
Energy Chem.
24
,
756
761
(
2015
).
12.
M. W.
Nie
,
H.
Tsai
,
R.
Asadpour
,
J. C.
Blancon
,
A. J.
Neukirch
,
G.
Gupta
,
J. J.
Crochet
,
M.
Chhowalla
,
S.
Tretiak
,
M. A.
Alam
,
H. L.
Wang
and
A. D.
Mohite
,
Science
347
,
522
525
(
2015
).
13.
B.
Lim
,
G. Y.
Margulis
,
J. H.
Yum
,
E. L.
Unger
,
B. e.
Hardin
,
M.
Gratzel
,
M. D.
Mcgehee
and
A.
Sellinger
,
J. Ameri. Chem. Soc.
15
,
784
787
(
2013
).
14.
G.
Sfyri
,
Q.
Chen
,
Y. W.
Lin
,
Y. L.
Wang
,
E.
Nouri
,
Z. X.
Xu
and
P.
Lianos
,
Electrochemica Acta
212
,
929
933
(
2016
).
15.
M. P.
Gao
,
K.T.
Cho
,
A.
Abate
,
G.
Grancini
,
P. Y.
Reddy
,
M.
Srivasu
,
M.
Adachi
,
A.
Suzuki
,
K.
Tsuchimoto
,
M.
Gratzel
and
M. K.
Nazeeruddin
,
Phys. Chem. Chem. Phys.
18
,
27083
27089
(
2016
).
16.
F.
Zhang
,
X.
Yang
,
M.
Cheng
,
W.
Wang
and
L.
Sun
,
Nano Energy
20
,
108
116
(
2016
).
17.
T.
Oku
,
S.
Hori
,
Atsushi
Suzuki
,
Tsuyoshi
Akiyama
and
Y.
Yamasaki
,
Applied Physics
53
,
05FJ08
(
2014
).
18.
B.
Ren
,
L.
Zhu
,
G.
Cui
,
Y.
Sun
,
X.
Zhang
,
F.
Liang
and
Y.
Liu
,
Tetrahedon Lett.
54
,
5953
5955
(
2013
).
19.
M. A.
Green
,
A. H.
Baillie
and
H. J.
Snaith
,
Nature Photonics
8
,
506
514
(
2014
).
20.
N. J.
Jeon
,
J.
Lee
,
J. H.
Noh
,
M. K.
Nazeeruddin
,
M.
Grӓtzel
and
S. I.
Seok
,
Am. Chem. Soc.
51
,
19087
19090
(
2013
).
21.
F.
Zhang
,
S.
Wang
,
Y.
Xiao
and
X.
Li
,
Synth Met
,
220
,
187
193
(
2016
).
22.
K. C.
Cho
,
K.
Rakstys
,
M.
Cavazzini
,
S.
Orlandi
,
G.
Pozzi
and
M. K.
Nazeeruddin
,
Nano Energy
,
30
,
853
857
(
2016
).
This content is only available via PDF.