Ultrasonic Nondestructive Testing is concerned with detecting flaws inside components without causing physical damage. It is possible to detect flaws using ultrasound measurements but usually no additional details about the flaw like position, dimension or orientation are available. The information about these details is hidden in the recorded experimental signals. The idea of full waveform inversion is to adapt the parameters of an initial simulation model of the undamaged specimen by minimizing the discrepancy between these simulated signals and experimentally measured signals of the flawed specimen. Flaws in the structure are characterized by a change or deterioration in the material properties. Commonly, full waveform inversion is mostly applied in seismology on a larger scale to infer mechanical properties of the earth. We propose to use acoustic full waveform inversion for structural parameters to visualize the interior of the component. The method is adapted to US NDT by combining multiple similar experiments on the test component as the typical small amount of sensors is not sufficient for a successful imaging. It is shown that the combination of simulations and multiple experiments can be used to detect flaws and their position, dimension and orientation in emulated simulation cases.

1.
Fichtner
,
A.
,
Full Seismic Waveform Modelling and Inversion
, (
Springer
,
Heidelberg
,
2011
).
2.
Fichtner
,
A.
,
Trampert
,
J.
,
Cupillard
,
P.
,
Saygin
,
E.
,
Taymaz
,
T.
,
Capdeville
,
Y.
,
Villasenor
,
A.
,
Multiscale full waveform inversion
.
Geophys. J. Int.
194
,
534
556
(
2013
).
3.
Givoli
,
D.
,
Time Reversal as a Computational Tool in Acoustics and Elastodynamics
.
J. Comput. Acoust.
22
,
1430001
(
2014
).
4.
Hinze
,
M.
(Ed.),
Optimization with PDE constraints
, (
Springer
,
Dordrecht
,
2009
).
5.
Marchuk
,
G.I.
,
Adjoint Equations and Analysis of Complex Systems
, (
Springer
,
Dordrecht
,
1995
).
6.
Nocedal
,
J.
,
Wright
,
S.J.
,
Numerical optimization
, (
Springer
,
New York
,
1999
).
7.
Pratt
,
R.G.
,
Shin
,
C.
,
Hick
,
G.J.
,
Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion
.
Geophys. J. Int.
133
,
341
362
(
1998
).
8.
Rao
,
J.
,
Ratassepp
,
M.
,
Fan
,
Z.
,
Guided Wave Tomography Based on Full Waveform Inversion
.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
63
,
737
745
(
2016
).
9.
Seidl
,
R.
,
Rank
,
E.
,
Iterative time reversal based flaw identification
.
Comput. Math. Appl.
72
,
879
892
(
2016
).
10.
Tarantola
,
A.
,
Inversion of seismic reflection data in the acoustic approximation
.
GEOPHYSICS
49
,
1259
1266
(
1984
).
11.
Tromp
,
J.
,
Komattisch
,
D.
,
Liu
,
Q.
,
Spectral-element and adjoint methods in seismology
.
Commun. Comput. Phys.
3
,
1
32
(
2008
).
12.
Virieux
,
J.
,
Operto
,
S.
,
An overview of full-waveform inversion in exploration geophysics
.
GEOPHYSICS
74
,
WCC1
WCC26
(
2009
).
13.
Wille
,
H.
,
Rank
,
E.
,
Yosibash
,
Z.
,
Prediction of the mechanical response of the femur with uncertain elastic properties
.
J. Biomech.
45
,
1140
1148
(
2012
).
This content is only available via PDF.