In this paper, the problem of Marangoni boundary layer flow in micropolar fluid is studied with suction/injection effect. The assumption of interface temperature to be a quadratic function of the distance x along the interface is taking into account. The technique of similarity transformations is used to transform the general governing partial differential equations into a set of nonlinear ordinary differential equations. The numerical solutions of ordinary differential equations are obtained by using shooting method for each profiles and presented in the form of tables and figures along with the results of surface heat transfer. The problem is considered for two different values of microrotation n, which is n = 0 and n = 0.5 where it is represented the strong and the weak concentration of microelements, respectively.

1.
H. A.
Attia
,
Stagnation Point Flow and Heat Transfer of a Micropolar Fluid with Uniform Suction or Blowing
,
Brazil Society of Mechanical Science and Engineering
5
,
51
55
(
2008
).
2.
D. M.
Christopher
and
B.
Wang
,
Prandlt Number Effects for Marangoni Convection over a Flat Surface
,
International Journal of Thermal Sciences
40
,
564
570
(
2001
).
3.
R. A.
Damseh
,
M.Q.
Al-Oldat
,
A.J.
Chamkha
and
B.A.
Shannak
,
Combined Effect of Heat Generation or Absorption and First-Order Chemical Reaction on Micropolar Fluid Flows over a Uniformly Stretched Permeable Surface
,
International Journal of Thermal Sciences
48
,
1658
1663
(
2009
).
4.
A. C.
Eringen
,
Int. J. Engng Sci.
2
,
205
(
1964
).
5.
A. C.
Eringen
,
Proc. of The Eleventh Int. Cong. Appl. Mech
.,
Munich Germany
13
, (
1965
).
6.
A. C.
Eringen
,
Theory of Micropolar Fluids
,
J. Math. Mech
16
,
1
18
(
1966
).
7.
R. S.
Gorla
,
Micropolar Boundary Layer Flow at a Stagnation Point on a Moving Wall
,
Int. J. of Engng. Sci.
21
,
25
33
(
1983
).
8.
C.
Golia
and
A.
Viviani
,
Non Isobaric Boundary Layers Related to Marangoni Flows
,
Meccanica
21
,
200
204
(
1986
).
9.
G. S.
Guram
and
A.C.
Smith
,
Stagnation Flows of Micropolar Fluids with Strong and Weak Interactions
,
Computers and Mathematics in Applications
6
,
213
233
(
1980
).
10.
L. G.
Napolitano
,
Marangoni Boundary Layers
,
Proc 3ʳᵈ European Symposium on Material Science in Space, Grenoble, ESA Sp-142
, (
1979
).
11.
G.
Nath
,
Similar Solutions for the Incompressible Laminar Boundary Layer with Pressure Gradient in Micropolar Fluids
,
Rheologica Acta
14
,
850
857
(
1975
).
12.
S. H.
Salleh
,
N.M.
Arifin
,
R.
Nazar
,
F.M.
Ali
and
I.
Pop
,
Marangoni Boundary Layer Flow in Micropolar Fluid
,
Australian Journal of Basic and Applied Sciences
8
,
12
23
(
2014
).
13.
J.
Thompson
,
Philosofical Magazine
10
,
330
333
(
1885
).
14.
A.
Ishak
,
Thermal Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid with Radiation Effect
,
Meccanica
45
,
367
373
(
2010
).
15.
J.
Peddieson
,
an Application of the Micropolar Fluid Model to the Circulation of a Turbulent Shear Flow
,
Int. J. Engng. Sci
10
,
23
32
(
1972
).
This content is only available via PDF.