Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength.

Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

1.
G.
Taylor
,
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
201
,
192
196
(
1950
).
2.
R. D.
Richtmyer
,
Communications on Pure and Applied Mathematics
13
,
297
319
(
1960
).
3.
M. M.
Marinak
,
B. A.
Remington
,
S. V.
Weber
,
R. E.
Tipton
,
S. W.
Haan
,
K. S.
Budil
,
O. L.
Landen
,
J. D.
Kilkenny
, and
R.
Wallace
,
Physical Review Letters
75
,
3677
3680
(
1995
).
4.
A. R.
Piriz
,
J. J. Lopez
Cela
,
N. A.
Tahir
, and
D. H. H.
Hoffmann
,
Physical Review E
78
, p.
056401
(
2008
).
5.
K. O.
Mikaelian
,
Physical Review E
47
,
375
383
(
1993
).
6.
K. O.
Mikaelian
,
Physical Review E
87
, p.
031003
(
2013
).
7.
H.-S.
Park
,
N.
Barton
,
J. L.
Belof
,
K. J. M.
Blobaum
,
R. M.
Cavallo
,
A. J.
Comley
,
B.
Maddox
,
M. J.
May
,
S. M.
Pollaine
,
S. T.
Prisbrey
,
B.
Remington
,
R. E.
Rudd
,
D. W.
Swift
,
R. J.
Wallace
,
M. J.
Wilson
,
A.
Nikroo
, and
E.
Giraldez
, “
Experimental results of tantalum material strength at high pressure and high strain rate
,” in
AIP Conference Proceedings
, Vol.
1426
(
2012
), pp.
1371
1374
.
8.
H.-S.
Park
,
R.
Rudd
,
R.
Cavallo
,
N.
Barton
,
A.
Arsenlis
,
J.
Belof
,
K.
Blobaum
,
B.
El-dasher
,
J.
Florando
,
C.
Huntington
,
B.
Maddox
,
M.
May
,
C.
Plechaty
,
S.
Prisbrey
,
B.
Remington
,
R.
Wallace
,
C.
Wehrenberg
,
M.
Wilson
,
A.
Comley
,
E.
Giraldez
,
A.
Nikroo
,
M.
Farrell
,
G.
Randall
, and
G.
Gray
,
Physical Review Letters
114
, p.
065502
(
2015
).
9.
M. B.
Prime
,
W. T.
Buttler
,
S. K.
Sjue
,
B. J.
Jensen
,
F. G.
Mariam
,
D. M.
Or
,
C. L.
Pack
,
J. B.
Stone
,
D.
Tupa
, and
W.
Vogan-McNeil
, in
Dynamic Behavior of Materials
, Volume
1
,
Conference Proceedings of the Society for Experimental Mechanics Series
(
2016
), pp.
191
197
.
10.
A.
Lebedev
,
P. N.
Nizovtsev
,
V.
Raevskii
, and
V. P.
Solov’ev
,
Physics - Doklady
41
,
328
330
(
1996
).
11.
G. C.
Randall
,
J.
Vecchio
,
J.
Knipping
,
D.
Wall
,
T.
Remington
,
P.
Fitzsimmons
,
M.
Vu
,
E. M.
Giraldez
,
B. E.
Blue
,
M.
Farrell
, and
A.
Nikroo
,
Fusion Science and Technology
63
,
274
281
(
2013
).
12.
J. T.
Larsen
and
S. M.
Lane
,
Journal of Quantitative Spectroscopy and Radiative Transfer
51
,
179
186
(
1994
).
13.
L. M.
Barker
and
R. E.
Hollenbach
,
Journal of Applied Physics
43
,
4669
4675
(
1972
).
14.
S. P.
Marsh
,
LASL shock Hugoniot data
, Vol.
5
(
Univ of California Press
,
1980
).
This content is only available via PDF.