The lack of published Ar gas shock data motivated an evaluation of the Ar Equation of State (EOS) in gas phase initial density regimes. In particular, these regimes include initial pressures in the range of 13.8 – 34.5 bar (0.025 – 0.056 g/ cm3) and initial shock velocities around 0.2 cm/μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Ar gas through Pagosa numerical simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian continuum dynamics code capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Ar gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, and reasonable comparisons for the ionization temperatures.

1.
Lyon
,
S.P.
,
Johnson
J.D.
, eds.,
SESAME: The Los Alamos National Laboratory Equation of State Database
, LA-UR-92-3407
2.
Holian
K.S.
,
T-4 Handbook of Material Properties Data Bases—vol. 1C—Equations of State
, LA-10160-MS.,
4.
Wolford
J.
,
Long
K.
, “A New Theoretical EOS for Argon,” H-Division Quarterly Report UCID-1857-81-3,
Lawrence Livermore Natinal Laboratory
,
Livermore CA
,
1981
5.
Dattlebaum
D.
Goodwin
P.
,
Garcia
D.
,
Gustavsen
R.
,
Lang
J.
,
Aslam
T.
,
Sheffield
S.
,
Gibson
L.
,
Morris
J.
, “
Shockwave compression of argon Gas at several initial densities
,”
19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter
,
June 2015
,
Tampa Fl
.
6.
Chen
Q.F.
,
Zheng
J.
,
Gu
Y.J.
,
Chen
Y.L.
,
Cai
L.C.
,
Shen
Z.J.
, “
Thermophysical properties of multi-shock compressed dense argon
,”
The Journal Of Chemical Physics
,
140
,
2014
7.
Van Thiel
M.
,
Adler
B.J.
, “
Shock Compression of argon
”,
The Journal of Chemical Physics
, V
44
No.
3
,
1966
, pp
1056
1065
.
8.
Nellis
W.J.
,
Mitchell
A.C.
, “
Shock compression of liquid argon, nitrogen, and oxygen to 90 GPA (900kbar
),”
J. Chem. Phys.
73
(
12
),
15 Dec 1980
, pp
6137
6145
.
9.
Grigor’ev
F.V.
,
Kormer
S.B.
,
O.L.
Mikhaiova
,
Mochalov
M.A.
,
Urlin
V.D.
, “
Shock compression and brightness temperature of a shock wave front in argon. Electron screening of radiation
,”
Sov. Phys. JETP
61
(
4
), April
1985
, pp
751
757
,
10.
Christian
R.H.
,
Yarger
F.L.
, “
Equation of State of Gases by Shock Wave Measurements. I. Experimental Method and the Hugoniot of argon
,”
J. Chem. Phys.
23
(
11
), 11,
1955
, pp
2042
244
.
11.
Shreffler
R.G.
,
Christian
R.H.
, “
Boundary Disturbances in High-Explosive Shock Tubes
,”
Journal of Applied Physics
,
25
(
1
) March
1954
., pp
324
331
.
12.
Camac
M.
, “
argon Shock Thickness
,”
Phys. Fluids
8
,
1964
, pp
1076
1078
.
13.
Fortov
V.E.
,
Leont’ev
A.A.
,
Dremin
A.N.
,
Gryaznov
V.K.
, “
Shock-wave production of a non-ideal plasma
”,
Sov. Phys. JETP
, Vol
44
, No.
1
., July
1976
.,
14.
Bespalov
V.E.
,
Gryaznov
V.K.
,
Dremin
A.N.
,
Fortov
V.E.
, “
Dynamic compression of non-ideal argon plasma
”,
Sov. Phys. JETP
, Vol
42
, No.
6
., Dec
1975
.,
15.
Weseloh
W. N.
,
Clancy
S.P.
,
Painter
J.W.
,
PAGOSAPhysicsManual
, LA-14425-M, August
2010
.
16.
Corbett
B.M.
, “
Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers
,”
International Journal of Impact Engineering
33
(
2006
) pp
431
440
.
17.
Manes
,
A.
,
Peroni
L.
,
Scapin
M.
,
Giglio
M.
, “
Analysis of strain rate behavior of an Al 6061 T6 alloy
,”
Procedia Engineering
10
(
2011
) pp.
3477
3482
.
18.
Winter
R.E.
,
Keightley
P.T.
,
Harris
E.J.
, “
Derivation of the constitutive model of high elastic limit window materials
,”
Shock Compression of Condensed Matter
,
2009
, pp
537
54
.
19.
Hayes
D.B.
,
Hall
C.A.
,
Asay
J.R.
,
Knudson
M.D.
, “
Continuous index of refraction measurements to 20 GPa in Z-cut sapphire
,
Journal of Applied Physics
94
,
2331
(
2003
).
20.
Kanel
G.I.
,
Nellis
W.J.
,
Savinykh
A.S.
,
Razorenov
S.V.
,
Rajendran
A.M.
, “
Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16-86 GPa
,”
Journal of Applied Physics
106
,
2009
.
This content is only available via PDF.