The CREST reactive-burn model uses entropy-dependent reaction rates that, until now, have been manually tuned to fit shock-initiation and detonation data in hydrocode simulations. This paper describes the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using particle swarm optimisation. The automatic method is applied to EDC32, to help develop the first CREST model for this conventional high explosive.

1.
C. A.
Handley
,
H. J.
Lacy
,
B. D.
Lambourn
,
N. J.
Whitworth
, and
H. R.
James
, “
CREST Models for PBX 9501 and PBX 9502
,” in
Proceedings of the 15th Detonation Symposium
,
San Francisco
,
2014
.
2.
C. A.
Handley
, and
H. R.
James
, “
A comparison between entropy, temperature and pressure-dependent reactive-burn models
,” in
Shock Compression of Condensed Matter-2011
,
AIP Conference Proceedings
1426
,
2012
, pp.
519
524
.
3.
J.
Kennedy
, and
R.
Eberhart
, “
Particle Swarm Optimisation
,”
1995
, vol.
IV
of
Proceedings of the IEEE International Conference on Neural Networks
, pp.
1942
1948
.
4.
M.
Christie
,
D.
Eydinov
,
V.
Demyanov
,
J.
Talbot
,
D.
Arnold
, and
V.
Shelkov
,
Society of Petroleum Engineers
(
2013
).
5.
M. J.
Burns
,
R. L.
Gustavsen
, and
B. D.
Bartram
,
J. Appl. Phys.
112
,
064910
(
2012
).
6.
M.
Christie
,
J.
Glimm
,
J.
Grove
,
D.
Higdon
,
D.
Sharp
, and
M.
Wood-Schultz
,
Los Alamos Science
pp.
6
25
(
2005
).
7.
N. J.
Whitworth
, “
CREST Modeling of the Jack Rabbit Series of Experiments
,” in
Proceedings of the 15th Detonation Symposium
,
San Francisco
,
2014
.
This content is only available via PDF.