The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

1.
D.
Qiu
,
L.
Yang
,
Y.
Yin
,
A.
Wang
,
Preparation and characterization of hydroxyapatite/titania composite coating on NiTi alloy by electrochemical deposition
.
Surf Coat Technol
205
(
2011
) p.
3280
3284
.
2.
M. F.
Yu
,
O.
Lourie
,
Dyer
,
M.J.
,
Moloni
,
K.
,
Kelly
,
T.F.
,
Ruoff
,
R.S.
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load
.
Science
,
287
(
2000
)
637
640
.
3.
S.
Singh
,
Y.
Pei
,
R.
Miller
,
P. R.
Sundararajan
,
Long Range, Entangled Carbon Nanotube Networks in Polycarbonate
.
Advanced Functional Materials
,
13
(
2003
)
868
872
.
4.
S. C.
Tjong
,
Carbon Nanotube–Metal Nanocomposites
.
Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices
(
2009
)
43
87
.
5.
V.
Mittal
, Synthesis and Properties of PVA/Carbon Nanotube Nanocomposites.
Polymer Nanotube Nanocomposites
. (
2010
)
John Wiley & Sons, Inc
.
6.
A. R.
Boccaccini
,
L. C.
Gerhardt
,
Carbon nanotube composite scaffolds and coatings for tissue engineering applications, Key Engineering Materials
:
Advanced Bioceramics in Nanomedicine and Tissue Engineering
441
(
2010
)
31
52
.
7.
A. R.
Boccaccini
,
J.
Cho
,
T.
Subhani
,
C.
Kaya
,
F.
Kaya
,
Electrophoretic deposition of carbon nanotube–ceramic nanocomposites
,
Journal of the European Ceramic Society
30
(
2010
)
1115
1129
.
8.
S.H.S.
Zein
,
F.
Gholami
.
Cytocompatibility and Mechanical Strength of Hydroxyapatite Reinforced with Multi-Walled Carbon Nanotubes
.
J Bioengineer & Biomedical Sci
2
(
2012
)
111
.
9.
F.
Gholami
,
S.H.S.
Zein
,
LC
Gerhardt
,
KL
Low
,
SH
Tan
,
D.S.
McPhail
,
L.M.
Grover
, and
A.R.
Boccaccini
.
Cytocompatibility, bioactivity and mechanical strength of calcium phosphate cement reinforced with multi-walled carbon nanotubes and bovine serum albumin
.
Ceramics International
39
,
5
(
2013
)
4975
4983
.
10.
T.
Akasaka
,
A.
Yokoyama
,
M.
Matsuoka
,
T.
Hashimoto
,
F.
Watari
,
Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations
.
Materials Science and Engineering: C
,
30
(
2010
)
391
399
.
11.
D.
Lahiri
,
S.
Ghosh
,
A.
Agarwal
,
Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review
.
Materials Science and Engineering: C
(
2012
)
1727
1758
.
12.
D.
Lahiri
,
A. P.
Benaduce
,
F.
Rouzaud
,
J.
Solomon
,
A. K.
Keshri
,
L.
Kos
,
A.
Agarwal
,
Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite–carbon nanotube composite coating
.
Journal of Biomedical Materials Research Part A
,
96
(
2011
)
1
12
.
13.
J.
Xu
,
K.
Khor
,
J.
Sui
,
W.
Chen
,
Preparation and characterization of a novel hydroxyapatite/carbon nanotubes composite and its interaction with osteoblast-like cells
.
Materials Science and Engineering: C
,
29
(
2009
)
44
49
.
14.
T.
Mosmann
,
Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays
,
Journal of Immunological Methods
65
(
1983
)
55
63
.
15.
Q.
Wang
,
W.
Huang
,
D.
Wang
,
B. W.
Darvell
,
D. E.
Day
,
M. N.
Rahaman
,
Preparation of hollow hydroxyapatite microspheres
.
Journal of Materials Science: Materials in Medicine
,
17
(
2006
)
641
646
.
16.
A.
Li
,
K.
Sun
,
W.
Dong
,
D.
Zhao
,
Mechanical properties, microstructure and histocompatibility of MWCNTs/HAp biocomposites
.
Materials Letters
,
61
(
2007
)
1839
1844
.
17.
Y.
Xiao
,
T.
Gong
,
S.
Zhou
,
The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite
.
Biomaterials
,
31
(
2010
)
5182
5190
.
18.
H.
Li
,
K. A.
Khor
,
V.
Chow
,
P.
Cheang
,
Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite
.
Journal of Biomedical Materials Research Part A
,
82
(
2007
)
296
303
.
19.
A.
Balakrishnan
,
B. C.
Lee
,
T. N.
Kim
,
B. B.
Panigrahi
,
Hydroxyapatite coatings on NaOH treated Ti–6Al–4V alloy using sol–gel precursor
.
Materials Science and Technology
,
23
(
2007
)
1005
1007
.
20.
D.
Meza
,
I.A.
Figueroa
,
C.
Flores-Morales
,
M.C.
Piña-Barba
,
Nano hydroxyapatite crystals obtained by colloidal solution
.
Revista mexicana de física
,
57
(
2011
)
471
474
.
21.
C.
Kealley
,
M.
Elcombe
,
A.
Van Riessen
,
B.
Ben-Nissan
,
Development of carbon nanotube-reinforced hydroxyapatite bioceramics
.
Physica B: Condensed Matter
,
385
(
2006
)
496
498
.
22.
L.
Berzina-Cimdina
,
N.
Borodajenko
,
Research of calcium phosphates using Fourier transform infrared spectroscopy
.
Infrared Spectroscopy Materials Science, Engineering and Technology, Edited by Theophile Theophanides
(
2012
)
123
149
.
23.
D. N.
Ungureanu
,
N.
Angelescu
,
Z.
Bacinschi
,
E.V.
Stoian
,
C. Z.
Rizescu
,
Thermal stability of chemically precipitated hydroxyapatite nanopowders
.
Int. J. Biol. Biomed. Eng
,
5
(
2011
)
57
64
.
24.
U. S.
Shin
,
I. K.
Yoon
,
G. S.
Lee
,
W. C.
Jang
,
J. C.
Knowles
,
H. W.
Kim
,
Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements
.
Journal of Tissue Engineering
(
2011
)
2
,
1
.
25.
Y.
Chen
,
C.
Gan
,
T.
Zhang
,
G.
Yu
,
P.
Bai
,
A.
Kaplan
,
Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings
.
Applied Physics Letters
,
86
(
2005
)
251905
251905-3
.
26.
J.
Cho
,
A. R.
Boccaccini
,
M. S.
Shaffer
,
Ceramic matrix composites containing carbon nanotubes
.
Journal of Materials Science
,
44
(
2009
)
1934
1951
.
27.
A. G.
Osorio
,
L. A. Dos
Santos
,
C. P.
Bergmann
,
Evaluation of the mechanical properties and microstructure of hydroxyapatite reinforced with carbon nanotubes
.
Reviews on Advanced Materials Science
,
27
(
2011
)
58
63
.
28.
A. A.
White
,
S. M.
Best
,
I. A.
Kinloch
,
Hydroxyapatite–carbon nanotube composites for biomedical applications: a review
.
International Journal of Applied Ceramic Technology
,
4
(
2007
)
1
13
.
29.
K.
Pulskamp
,
S.
Diabate
H.
Krug
,
Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants
.
Toxicol. Lett.
168
(
2007
)
58
74
.
30.
C.
Cheng
,
K. H.
Müller
,
K. K.
Koziol
,
J. N.
Skepper
,
P. A.
Midgley
,
M. E.
Welland
,
A. E.
Porter
,
Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells
.
Biomaterials
,
30
(
2009
)
4152
4160
.
31.
F.
Zhang
,
A.
Weidmann
,
B.
Nebe
,
E.
Burkel
,
Osteoblast cell response to surface-modified carbon nanotubes
.
Materials Science and Engineering C
,
32
(
2012
)
1057
1061
This content is only available via PDF.