The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.

1.
C. A.
Özarslan
,
S.
Yücel
,
2016
.
Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica
68
, p.
350
357
.
2.
A.
D’Onofrio
,
W. N.
Kent
,
A. S
,
Shahdad
,
G. R.
Hill
,
2016
.
Development of novel strontium containing bioactive glass based calcium phosphate cement
32
, p.
703
712
.
3.
M. B.
Holzapfel
,
C. J.
Reichert
,
T. J.
Schantz
,
U.
Gbureck
,
L.
Rackwitz
,
U.
Nöth
,
F.
Jakob
,
M.
Rudert
,
J.
Groll
,
D. W.
Groll
,
2013
.
How smart do biomaterials need to be? A translational science and clinical point of view
65
, p.
581
603
.
4.
D.
Bellucci
,
A.
Sola
,
R.
Salvatori
,
A.
Anesi
,
L.
Chiarini
,
V.
Cannillo
,
2014
.
Sol–gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds
43
, p.
573
586
.
5.
N.
Shankhwar
,
A.
Srinivasan
,
2016
.
Evaluation of sol–gel based magnetic 45S5 bioglass and bioglass–ceramics containing iron oxide
62
, p.
190
196
.
6.
E.
Rezabeigi
,
M. P.
Wood-Adams
,
L. A. R.
Drew
,
2014
.
Synthesis of 45S5 Bioglass® via a straightforward organic, nitrate-free sol–gel process
40
, p.
248
252
.
7.
D.
Groh
,
F.
Döhler
,
S. D.
Brauer
,
2014
.
Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation
10
, p.
4465
4473
.
8.
D. M.
O’Donnell
,
L. P.
Candarlioglu
,
A. C.
Miller
,
E.
Gentleman
,
M. M.
Stevens
,
2010
.
Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration
20
, p.
8934
8941
.
9.
R. J.
Jones
,
2013
.
Review of bioactive glass: From Hench to hybrids
9
, p.
4457
4486
.
10.
M.
Abdellahi
,
B.
Maryam
,
B.
Marjan
,
2014
.
Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling
40
, p.
16259
16272
.
11.
T.
Bergs
,
V.
Richter
,
M.
Ottersbach
,
J.
Pötschke
,
C.
Hochmuth
,
K.
Busch
,
2016
.
Tool technologies for milling of hardmetals and ceramics
46
, p.
299
302
.
12.
M.
Broseghini
,
L.
Gelisio
,
M.
D’Incau
,
A. L. C.
Ricardo
,
N. M.
Pugno
,
P.
Scardi
,
2016
.
Modeling of the planetary ball-milling process: The case study of ceramic powders
36
, p.
2205
2212
.
13.
F. A.
Shah
,
D. S.
Brauer
,
R. G.
.
Hill
,
K. A.
Hing
,
2015
.
Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins
153
, p.
143
147
14.
S. M.
Rabiee
,
N.
Nazparvara
,
M.
Azizian
,
D.
Vashaee
,
L.
Tayebi
,
2015
.
Effect of ion substitution on properties of bioactiveglasses : A review
41
, p.
7241
7251
.
15.
V.K.
Marghussian
,
A. S. M.
Mesgar
,
2000
.
E€ ects of composition on crystallization behaviour and mechanical properties of bioactive glass-ceramics in the MgO-CaO-SiO2-P2O5 system
26
, p.
415
420
.
16.
A.K.
Srivastava
,
R.
Pyare
,
2012
.
Characterization of CuO substituted 45S5 Bioactive Glasses and Glass-Ceramics
1
, p.
2
.
17.
D.
Rohanová
,
A. R.
Boccaccini
,
D. M.
Yunos
,
D.
Horkavcová
,
I.
Březovská
,
A.
Helebrant
,
2011
.
TRIS buffer in simulated body fluid distorts the assessment of glass–ceramic scaffold bioactivity
7
, p.
2623
2630
.
18.
S. R.
Kumar
,
D.
Sivakumar
,
S. A.
Gandhi
,
2012
.
Effect of molybdenum disilicide additions on the oxidation behaviour of silicon carbide
66
, p.
451
454
.
19.
C. Y.
Liao
,
Y.C.
Huang
,
2012
.
Glass foam from the mixture of reservoir sediment and Na2CO3
38
, p.
4415
4420
.
20.
J.
Cheng
,
Z.
Deng
,
2012
.
Decomposition kinetics of granulated glass batch
358
, p.
3294
3298
.
21.
Z.
Yan
,
Z.
Wang
,
H.
Liu
,
Y.
Tu
,
W.
Yang
,
H.
Zeng
,
J.
Qiu
,
2015
.
Decomposition and solid reactions of calcium sulfate doped with SiO2, Fe2O3 and Al2O3
113
, p.
491
498
.
22.
E. A.
Hannora
,
2015
.
Synthesis of lead–borate glasses using high energy ball milling (attritor)
429
, p.
1
4
.
23.
J.
Orava
,
L. A.
Greer
,
2016
.
Fast crystal growth in glass-forming liquid xxx
, p.
xxx
xxx
.
24.
M. Fatima
Zohra
,
L. G.
Anita
,
O.
Hassane
,
H.
Abdelhamid
,
2013
.
Reactivity kinetics of 52S4 glass in the quaternary system SiO2–CaO–Na2O–P2O5: Influence of the synthesis process: Melting versus sol–gel
361
, p.
111
118
.
This content is only available via PDF.