Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.

1.
K.
Khojier
,
H.
Savaloni
and
Z.
Sadeghi
,
J. Theor. Appl. Phys.
8
,
116
(
2014
).
2.
P.
Samarasekara
,
GESJ Phys.
2
(
2
),
3
8
(
2010
).
3.
L.
Armelao
,
D.
Barreca
,
M.
Bertapelle
,
G.
Bottaro
,
C.
Sada
and
E.
Tondello
,
Thin Solid Films
442
(
03
),
48
52
(
2003
).
4.
F.
Marabelli
,
G. B.
Parravicini
, and
F.
Salghetti-Drioli
,
Phys. Rev. B
52
(
3
),
1433
1436
(
1995
).
5.
R.
Ravichandran
, “
Fabrication and Characterization of p-type CuO / n-type ZnO Heterostructure Gas Sensors Prepared by Sol-Gel Processing Techniques
,”
2009
.
6.
A. S.
Zoolfakar
, “
Tuning and Engineering of ZnO and Cu x O for Sensor, Solar Cells and Memory Devices Tuning and Engineering of ZnO and Cu x O for Sensor, Solar Cells and Memory Devices
,”
2013
.
7.
Q.
Zhang
,
K.
Zhang
,
D.
Xu
,
G.
Yang
, and
H.
Huang
,
Prog. Mater. Sci.
60
,
208
337
(
2014
).
8.
A. C. et al. 
C.
Dhas
,
D.
Alexendar
,
Appl. Sci.
8
,
671
684
(
2014
).
9.
K.
Khojier
,
Int. J. Nano Dimens.
2
(
3
),
185
190
(
2012
).
10.
L.
De Los Santos Valladares
,
D. H.
Salinas
,
a. B.
Dominguez
,
D. A.
Najarro
,
S. I.
Khondaker
,
T.
Mitrelias
,
C. H. W.
Barnes
,
J. A.
Aguiar
, and
Y.
Majima
,
Thin Solid Films
520
(
20
),
6368
6374
(
2012
).
11.
T.
Nadu
,
T.
Nadu
, and
P. M.
Group
,
Int. J. Inf. Res. Rev.
1
,
7
11
(
2014
).
12.
Z.
Huda
,
T.
Zaharinie
,
H. S. C.
Metselaar
,
S.
Ibrahim
, and
G. J.
Min
,
Arch. Metall. Mater.
59
(
3
),
1
5
(
2014
).
13.
M. R.
Johan
,
M.
Shahadan
,
M.
Suan
,
N. L.
Hawari
, and
H. A.
Ching
,
Int. J. Electrochem. Sci.
,
6
,
6094
6104
(
2011
).
This content is only available via PDF.