Roller bearing is one of the vital parts of a rotating machine. Bearing failure can result in serious damage of the machine. This paper aims to develop a bearing fault diagnosis method using parameter evaluation technique to improve the diagnosis accuracy. The parameter evaluation technique is used to select five features that are used as predictors in multi-class support vector machine (SVM) classification. The purpose of this feature reduction was to avoid the curse of dimensionality and to increase the accuracy of the diagnosis. The diagnosis process was performed by classification of bearing states using one-against-one method multi-class SVM. Three types of kernel functions i.e., linear, polynomial, and Gaussian RBF were used in the SVM classification. The bearing conditions which is diagnosed in this paper were normal bearing, inner race fault, and outer race fault conditions. As a result, the classification performance of multiclass SVM using five selected features as the parameter have excellent performance in predict the bearing conditions data for all types of kernel functions.

1.
O.
Sadettin
,
A.
Nizami
and
C.
Veli
,
NDT & E International
39
, pp.
293
298
(
2006
).
2.
G.
Wang
,
Y.
He
and
K.
He
,
Journal of Software
7
, pp.
1531
1538
(
2012
).
3.
P. K.
Kankar
,
C. S.
Satish
and
S. P.
Harsha
,
Expert Systems with Applications
38
, pp.
1876
1886
(
2011
).
4.
N.
Tandon
and
A.
Choudhury
,
Journal of Sound and Vibration
205
, pp.
275
292
(
1997
).
5.
H.
Li
,
Journal of Computers
6
, pp.
1994
2000
(
2011
).
6.
A.
Singhal
, and
M.A.
Khandekar
,
IJAREEIE
2
, pp.
3258
3264
(
2013
).
7.
T.
Han
,
D.
Jiang
and
N.
Wang
,
Shock and Vibration
, Article ID
5957179
, (
2016
).
8.
J.H.
Ahn
,
D.H.
Kwak
and
B.H.
Koh
,
Sensors
14
, pp.
15022
15038
(
2014
).
9.
P.
Sakya
,
A.K.
Darpe
,
M.S.
Kulkarni
,
IJCM Journal
3
(
2
), (
2013
).
10.
B.
Samanta
,
K.R.
Al-Balushi
,
S.A.
Al-Arami
,
EURASHIP Journal on Applied Signal Processing
3
, pp.
366
377
(
2004
).
11.
A.
Widodo
,
J.D.
Son
,
B.S.
Yang
,
Y.H.
Kim
,
A.C.C.
Tan
,
J.
Mathew
,
D.S.
Gu
,
B.K.
Choi
, “
Fault Diagnosis of Low Speed Bearing Based on Acoustic Emission Signal and Multi-Class Relevance Vector Machine
”, in
15th International Congress on Sound and Vibration
,
6-10 July 2008
,
Daejeon
, pp.
1468
1475
.
12.
K.M.
Bhavaraju
,
P.K.
Kankar
,
S.C.
Sharma
.
S.P.
Harsha
,
IJEST
2
(
5
), pp.
1001
1008
(
2010
).
13.
S. D.
Wu
,
P. H.
Wu
,
C. W.
Wu
,
J.J.
Ding
,
C.C.
Wang
,
Entropy
14
, pp.
1343
1356
(
2012
).
14.
C.
Rajeswari
,
B.
Sathiyabhama
,
S.
Devendiran
,
K.
Manivannan
,
IJMME-IJENS
15
(
1
), (
2015
).
15.
S.
Vora
,
J.A.
Gaikwad
,
J.V.
Kulkarni
,
Advanced Research in Electrical and Electronic Engineering (AREEE)
2
(
5
), pp.
41
46
(
2015
).
16.
D.H.
Hwang
,
Y.W.
Youn
,
J.H.
Sun
,
K.H.
Choi
,
J.H.
Lee
,
Y.H.
Kim
,
JEET
10
, pp.
30
40
(
2015
).
17.
B.S.
Yang
and
A.
Widodo
,
Journal of System Design and Dynamics
2
(
1
), pp.
12
23
(
2008
).
18.
H.
Guo
,
L.
Jack
, and
A.
Nandi
,
IEEE Transactions on Systems, Man, and Cybernetics, Part B
,
35
(
1
), pp.
89
99
(
2005
).
19.
N.
Tandon
, and
A.
Choudhury
,
Tribology International
32
(
8
), pp.
469
48
(
1999
).
20.
S.
Sassi
,
B.
Badri
, and
M.
Thomas
,
Journal of Vibration and Control
13
(
11
), pp.
1603
1628
(
2007
).
21.
A.
Widodo
,
Application of Intelligent System for Machine Fault Diagnosis and Prognosis
(
Badan Penerbit Universitas Diponegoro
,
Semarang
,
2009
), pp.
21
22
.
22.
V.N.
Vapnik
,
IEEE Transactions on Neural Network
10
(
5
), pp.
988
999
(
1999
).
This content is only available via PDF.