Pt nanoparticles on La-doped sodium tantalum oxide (La0.02Na0.98TaO3), which acts as an active co-catalyst for H2 evolution under UV light irradiation was successfully synthesized by photo-deposition method. The La0.02Na0.98TaO3 photocatalyst was obtained by the reaction of La(NO3)2.3H2O, TaCl5, and NaOH at ambient temperature. The catalyst produced was characterized by a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM). SEM images of the La0.02Na0.98TaO3 sample showing that its particles size is ranging between 50-150 nm. The Pt particles are detected from HRTEM images is around 2-4 nm. The Pt/La0.02Na0.98TaO3 samples prepared were applied for photocatalytic H2 production at 30°C. The photocatalyst performance was evaluated for hydrogen production from water combining with glycerol as an electron donor (sacrificial reagent). The reactions were carried out in a closed reactor with a gas circulation system, illuminated with mercury (Hg) lamp. The experimental results show that the presence of glycerol in the systems can not only improve the efficiency of photocatalytic hydrogen generation but can also be decomposed to hydrogen efficiently. The photocatalytic activity of La0.02Na0.98TaO3 is significantly enhanced when Pt was loaded onto its crystalline surface.

1.
R.
Molinari
,
T.
Marino
,
P.
Argurio
,
Int. J. Hydrogen Energy
37
,
7247
7261
(
2014
).
2.
H.
Ahmad
,
S.K.
Kamarudin
,
L.J.
Minggu
and
M.
Kassim
,
Renewable and Sustainable Energy Rev.
43
,
599
610
(
2015
).
3.
S.
Xu
and
D.D.
Sun
,
Int. J. Hydrogen Energy
34
,
6096
6104
(
2009
).
4.
H.
Husin
,
K.
Pontas
,
Y.S.S.
Syawaliah
and
S.
Saisa
,
J. Eng.Tech. Sci.
46
,
322
331
(
2014
).
5.
B.
Ma
,
F.
Wen
,
H.
Jiang
,
J.
Yang
,
P.
Ying
and
C.
Li
,
Catal. Lett.
134
,
78
86
(
2010
).
6.
X.
Zhang
,
Catal. Lett.
144
,
1253
1257
(
2014
).
7.
H.
Husin
,
M.
Mahidin
,
Z.
Zuhra
,
F.
Hafita
and
Y.
Yunardi
,
Key Eng. Mater.
659
,
231
236
(
2015
).
8.
H.
Husin
,
M.
Mahidin
,
Z.
Zuhra
and
F.
Hafita
,
Bull. Chem.Reac. Eng. Catal.
9
,
81
86
(
2014
).
9.
Y.
Chen
,
H.
Yang
,
X.
Liu
and
L.
Guo
,
Int. J. Hydrogen Energy
35
,
7029
7035
(
2010
).
10.
C.C.
Hu
and
H.
Teng
,
Appl. Catal., A A
331
,
44
50
(
2007
).
11.
D.G.
Porob
and
P.A.
Maggard
,
J. Solid State Chem.
179
,
1727
1732
(
2006
).
12.
H.
Yi
,
T.
Peng
,
D.
Ke
,
D.
Ke
,
L.
Zan
and
C.
Yan
,
Int. J. Hydrogen Energy
33
,
672
678
(
2008
).
13.
Y.
Li
,
D.
Gao
,
S.
Peng
,
G.
Lu
and
S.
Li
,
Int. J. Hydrogen Energy
36
,
4291
4297
(
2011
).
14.
H. X.
Sang
,
X. T.
Wang
,
C. C.
Fan
and
F.
Wang
,
Int. J. Hydrogen Energy
37
,
1348
1355
(
2012
).
15.
Y.
Li
,
D.
Gao
,
S.
Peng
,
G.
Lu
and
S.
Li
,
Int. J. Hydrogen Energy
36
,
4291
4297
(
2011
).
16.
B.
Lin
,
Y.
Zhou
,
L.
He
,
W.
Yang
,
Y.
Chen
and
B.
Gao
,
J. Phys. Chem. Solids
79
,
66
71
(
2015
).
17.
H.
Husin
,
W. N.
Su
,
H. M.
Chen
,
C. J.
Pan
,
S. H.
Chang
,
J.
Rick
,
W. T.
Chuang
,
H. S.
Sheu
and
B. J.
Hwang
,
Green Chem.
13
,
1745
1754
(
2011
).
18.
D. P.
Serrano
,
G.
Calleja
,
P.
Pizarro
and
P.
Gálvez
,
Int. J. Hydrogen Energy
39
,
4812
4819
(
2014
).
19.
H.
Husin
,
W.N.
Su
,
C.J.
Pan
,
J.Y.
Liu
,
J.
Rick
,
S.C.
Yang
,
W.T.
Chuang
,
H.S.
Sheu
and
B.J.
Hwang
,
Int. J. Hydrogen Energy
38
,
13529
13540
(
2013
).
This content is only available via PDF.