This study is focus to the Smoothed Particle Hydrodynamics (SPH) method for simulations in indoor environment quality problem. There were done a few benchmark cases for better understanding of this method and for a validation of SPH program DualSPHysics. The benchmark test was flow past square cylinder, where different Reynolds number were tested. The main case was an observation of airflow through a simple air diffuser. Results from numerical simulations where SPH method were used were compared with results from numerical simulations where finite volume method (FVM) with Reynolds Averaged Navier-Stokes approach (RANS) was used. There were compared instantaneous velocities obtained from numerical simulations of both methods (FVM and SPH). Numerical simulations were done using classical processor (CPU) and graphic card unit (GPU).

1.
J. J.
Monaghan
,
Smoothed Particle Hydrodynamic
.
Annu. Rev. Astron. Astrophy
30
,
543
574
(
1992
).
2.
B. D.
Rogers
,
R. A.
Dalrymple
,
P. K.
Standsby
,
Simulation of caisson breakwater movement using SPH
.
Journal of Hydraulic Research
48
,
135
141
(
2010
).
3.
J. J.
Monaghan
,
Simulating free surface flowswith SPH
.
Journal of Computational Physics
110
,
399
406
(
1994
).
4.
R. A.
Dalrymple
,
B. D.
Rogers
,
Numerical modeling of water waves with the SPH method
.
Coastal Engineering
53
,
141
147
(
2006
).
5.
A.
Skillen
,
A.
Lind
,
P. K.
Stansby
,
B. D.
Rogers
,
Incompressible smoothed particle hydrodynamics (SPH) with reduce temporal noise and generalized FIckian smoothing applied to body-water slam and efficient wave-body interaction
.
Comput. Methods Appl. Mech. Engrg.
256
,
163
173
(
2013
).
6.
A.
Colagrossi
,
M.
Landrini
,
Numerical simulation of interfacial flows by smoothed particle hydrodynamics
.
Journal of Computational Physics
191
,
448
475
(
2003
).
7.
J. J.
Monaghan
,
A.
Kocharyan
,
SPH simulation of multi-phase flow
.
Comput. Phys. Commun.
87
,
225
235
(
1995
).
8.
A.
Mokos
,
B. D.
Rogers
,
P. K.
Stansby
,
J. M.
Dominguez
,
Multi-phase SPH modeling of violent hydrodynamics on GPUs
.
Comput. Phys. Commun.
196
,
304
316
(
2015
).
9.
S.
Suprijadi
,
F.
Faizal
,
R. R.
Septiawan
,
Computational Study on Melting Process Using Smoothed Particle Hydrodynamics
.
Journal of Modern Physics
5
,
112
116
(
2015
).
10.
A. M.
Tartakovsky
,
P.
Meakin
,
T. D.
Scheibe
,
R. M.
Eichler West
,
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
.
Journal of Computation Physics
222
,
654
672
(
2007
).
11.
R.
Vacondio
,
B. D.
Rogers
,
P. K.
Standsby
,
P.
Mignosa
,
J.
Feldman
,
Variable resolution for SPH: A dynami particle coalescing and splitting scheme
.
Comput. Methods Appl. Mech. Engrg.
256
,
132
148
(
2013
).
12.
A. J.
Crespo
,
J. M.
Dominguez
,
B. D.
Rogers
,
M.
Gomez-Gesteira
,
S.
Longshaw
,
R.
Canelas
,
R.
Vacondio
,
A.
Barreiro
,
O.
Garcia-Feal
,
DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)
.
Comput. Phys. Commun.
187
,
204
216
(
2015
).
13.
F.
Macia
,
A.
Souto-Iglesias
,
M
Antuono
,
A
Colagrossi
,
Benefits of using a Wendland kernel for free-surface flows
.
6ᵗʰ international SPHERIC workshop
,
Hamburg, Germany
(
2011
).
This content is only available via PDF.