This paper presents the design, manufacture and electrical test of a novel integrated III:V low concentrator photovoltaic and thermoelectric device for enhanced solar energy harvesting efficiency. The PCB-based platform is a highly reliable means of controlling CPV cell operational temperature under a range of irradiance conditions. The design enables reproducible data acquisition from CPV solar cells whilst minimizing transient time for solid state cooling capability.
REFERENCES
1.
L.
Micheli
, E.F.
.Fernandez
, F.
Almonacid
, T.K.
Mallick
and G.P.
Smestad
, Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics
. Solar Energy Materials & Solar Cells
153
(2016
) 164
–178
.2.
E.F.
Fernandez
, F.
Almonacid
, P.
Rodrigo
. P.
Perez-Higueras
, Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods
. Sol. Energy Mater. Sol. Cells
121
(2014
) 144
–151
.3.
W. G. J. H. M.
Sark
, Feasibility of photovoltaic – Thermoelectric hybrid modules
. Applied Energy
88
(8
), pp. 2785
–2790
(2011
).Liao
, T.
et al. 2014
. Performance characteristics of a low concentrated photovoltaic– thermoelectric hybrid power generation device
. International Journal of Thermal Sciences
77
, pp. 158
–164
.4.
T.
Liao
et al. Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device
. International Journal of Thermal Sciences
77
, pp. 158
–164
(2014
).5.
X.
Xu
et al. Performance Analysis of a Combination System of Concentrating Photovoltaic/Thermal Collector and Thermoelectric Generators
. Journal of Electronic Packaging
136
(4
), pp. 041004
–041004
(2014
).6.
D.M.
Rowe
, and G.
Min
. Design theory of thermoelectric modules for electrical power generation
. IEE Proceedings - Science, Measurement and Technology
143
(6
), pp. 351
–356
(1996
).7.
F.
Attivissimo
et al. Feasibility of a Photovoltaic Thermoelectric Generator: Performance Analysis and Simulation Results
. IEEE Transactions on Instrumentation and Measurement
64
(5
), pp. 1158
–1169
(2015
).8.
J.
Lin
et al. Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system
. Energy Conversion and Management
105
, pp. 891
–899
(2015
).9.
J.
Zhang
et al. A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell
. International Journal of Energy Research
(2016
).10.
R.
Lamba
and S.C.
Kaushik
. Modeling and performance analysis of a concentrated photovoltaic– thermoelectric hybrid power generation system
. Energy Conversion and Management
115
, pp. 288
–298
(2016
).11.
H.
Hashim
et al. Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system
. Renewable Energy
87
, Part 1, pp. 458
–463
(2016
).12.
D.
Narducci
and B.
Lorenzi
. Challenges and Perspectives in Tandem Thermoelectric and Photovoltaic Solar Energy Conversion
. IEEE Transactions on Nanotechnology
15
(3
), pp. 348
–355
(2016
).13.
O.
Beeri
et al. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling
. Journal of Applied Physics
118
(11
), p. 115104
(2015
).14.
W.
Zhu
et al. High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management
. Energy
100
, pp. 91
–101
(2016
).15.
D.N.
Kossyvakis
et al. Experimental analysis and performance evaluation of a tandem photovoltaic– thermoelectric hybrid system
. Energy Conversion and Management
117
, pp. 490
–500
(2016
).16.
J.
Garcia-Canadas
and G.
Min
, Low frequency impedance spectroscopy analysis of thermoelectric modules
. Journal of Electronic Materials
, Vol 43
, No 6
, 2014
17.
G.
Siefer
and A.W.
Bett
A.W., Progress in Photovoltaics: Research and Applications
2014
; 22
: 515
–524
.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)