This paper presents the design, manufacture and electrical test of a novel integrated III:V low concentrator photovoltaic and thermoelectric device for enhanced solar energy harvesting efficiency. The PCB-based platform is a highly reliable means of controlling CPV cell operational temperature under a range of irradiance conditions. The design enables reproducible data acquisition from CPV solar cells whilst minimizing transient time for solid state cooling capability.

1.
L.
Micheli
,
E.F.
.
Fernandez
,
F.
Almonacid
,
T.K.
Mallick
and
G.P.
Smestad
,
Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics
.
Solar Energy Materials & Solar Cells
153
(
2016
)
164
178
.
2.
E.F.
Fernandez
,
F.
Almonacid
,
P.
Rodrigo
.
P.
Perez-Higueras
,
Calculation of the cell temperature of a high concentrator photovoltaic (HCPV) module: a study and comparison of different methods
.
Sol. Energy Mater. Sol. Cells
121
(
2014
)
144
151
.
3.
W. G. J. H. M.
Sark
,
Feasibility of photovoltaic – Thermoelectric hybrid modules
.
Applied Energy
88
(
8
), pp.
2785
2790
(
2011
).
Liao
,
T.
 et al. 
2014
.
Performance characteristics of a low concentrated photovoltaic– thermoelectric hybrid power generation device
.
International Journal of Thermal Sciences
77
, pp.
158
164
.
4.
T.
Liao
 et al. 
Performance characteristics of a low concentrated photovoltaic–thermoelectric hybrid power generation device
.
International Journal of Thermal Sciences
77
, pp.
158
164
(
2014
).
5.
X.
Xu
 et al. 
Performance Analysis of a Combination System of Concentrating Photovoltaic/Thermal Collector and Thermoelectric Generators
.
Journal of Electronic Packaging
136
(
4
), pp.
041004
041004
(
2014
).
6.
D.M.
Rowe
, and
G.
Min
.
Design theory of thermoelectric modules for electrical power generation
.
IEE Proceedings - Science, Measurement and Technology
143
(
6
), pp.
351
356
(
1996
).
7.
F.
Attivissimo
 et al. 
Feasibility of a Photovoltaic Thermoelectric Generator: Performance Analysis and Simulation Results
.
IEEE Transactions on Instrumentation and Measurement
64
(
5
), pp.
1158
1169
(
2015
).
8.
J.
Lin
 et al. 
Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system
.
Energy Conversion and Management
105
, pp.
891
899
(
2015
).
9.
J.
Zhang
 et al. 
A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell
.
International Journal of Energy Research
(
2016
).
10.
R.
Lamba
and
S.C.
Kaushik
.
Modeling and performance analysis of a concentrated photovoltaic– thermoelectric hybrid power generation system
.
Energy Conversion and Management
115
, pp.
288
298
(
2016
).
11.
H.
Hashim
 et al. 
Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system
.
Renewable Energy
87
, Part 1, pp.
458
463
(
2016
).
12.
D.
Narducci
and
B.
Lorenzi
.
Challenges and Perspectives in Tandem Thermoelectric and Photovoltaic Solar Energy Conversion
.
IEEE Transactions on Nanotechnology
15
(
3
), pp.
348
355
(
2016
).
13.
O.
Beeri
 et al. 
Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling
.
Journal of Applied Physics
118
(
11
), p.
115104
(
2015
).
14.
W.
Zhu
 et al. 
High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management
.
Energy
100
, pp.
91
101
(
2016
).
15.
D.N.
Kossyvakis
 et al. 
Experimental analysis and performance evaluation of a tandem photovoltaic– thermoelectric hybrid system
.
Energy Conversion and Management
117
, pp.
490
500
(
2016
).
16.
J.
Garcia-Canadas
and
G.
Min
,
Low frequency impedance spectroscopy analysis of thermoelectric modules
.
Journal of Electronic Materials
, Vol
43
, No
6
,
2014
17.
G.
Siefer
and
A.W.
Bett
A.W.,
Progress in Photovoltaics: Research and Applications
2014
;
22
:
515
524
.
This content is only available via PDF.