A Cassegrainian optical design reaching ultra-high concentration fluxes (more than 1000 suns) is presented. The system is based on the use of four independent off-axis pairs of parabolic-hyperbolic reflectors that concentrate sunrays onto a central receiver (TOE, tertiary optical element) which works as a Köhler integrator. This design reaches an effective concentration ratio simulated of 1682 suns while using relative small mirrors. The acceptance angle characteristic is analyzed in terms of both the detailed ray tracing on the TOE and the irradiance pattern on the solar cell for a misalignment situation near to the acceptance angle of the design, which is 0.61°.

1.
Pérez-Higueras
,
P
;
Fernández
,
EF
,
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
Springer International Publishing
,
2015
.
2.
C.
Algora
,
I.
Rey-Stolle
,
I.
García
,
B.
Galiana
,
M.
Baudrit
,
P.
Espinet
,
E.
Barrigón
and
J.
Ramón
, “
III-V Multijunction Solar Cells for Ultra-High Concentration Photovoltaics
,”
Photovoltaic Specialists Conference (PVSC) 34th IEEE
, pp.
001571
001575
,
2009
.
3.
D.
Talavera
,
P.
Pérez-Higueras
,
J.
Ruíz-Arias
and
E.
Fernández
, “
Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain
,”
Applied Energy
, vol.
151
, p.
49
59
,
2015
.
4.
E. F.
Fernández
,
A. J.
García-Loureiro
and
G. P.
Smestad
, “Multijunction concentrator solar cells: Analysis and fundamentals,” in
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
Pérez-Higueras
,
Pedro
and
Fernández
,
Eduardo F.
(Eds.)
Springer
,
2015
, pp.
9
37
.
5.
K.
Shanks
,
S.
Senthilarasu
and
T.
Mallick
, “High-Concentration Optics for Photovoltaic Applications,” in
High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
,
Springer International Publishing
,
2015
, p.
85
113
.
6.
K.
Shanks
,
N.
Sarmah
,
J. P.
Ferrer-Rodríguez
,
S.
Senthilarasu
,
K. S.
Reddy
,
E. F.
Fernández
and
T.
Mallick
, “
Theoretical Investigation Considering Manufacturing Errors of a High Concentrating Photovoltaic of Cassegrain design and its Experimental Validation
,”
Solar Energy
, vol.
131
, p.
235
245
,
2016
.
7.
J.
Ferrer-Rodríguez
,
E.
Fernández
,
F.
Almonacid
and
P.
Pérez-Higueras
, “
Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovolatics module with central receiver
,”
Optics Letters
, no. doc. ID 259645, (posted 30 March
2016
, in press).
8.
R.
Winston
and
W.
Zhang
, “
Simple Köhler homogenizers for image-forming solar concentrators
,”
AIP Conf. Proc.
, vol.
1407
, p.
105
108
,
2011
.
9.
C.
Liang
and
J.
Lin
, “
High concentration thin profile solar concentrator utilizing toroidal confocal relay
,”
Solar Energy
, no.
122
, p.
264
270
,
2015
.
10.
M.
Dreger
,
M.
Wiesenfarth
,
A.
Kisser
,
T.
Schmid
and
A.
Bett
, “
Development And Investigation Of A CPV Module With Cassegrain Mirror Optics
,”
Proceedings CPV-10
, vol.
177
,
2014
.
11.
P.
Benitez
,
A.
Cvetkovic
,
R.
Winston
,
L.
Reed
,
J.
Cisneros
,
A.
Tovar
,
A.
Ritschel
and
J.
Wright
, “
High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells
,”
IEEE Conf. Photovolt. Spec.
, vol.
1
, pp.
690
693
,
2006
.
12.
K.
Shanks
,
N.
Sarmah
,
K.
Reddy
and
T.
Mallick
, “
The design of a parabolic reflector system with high tracking tolerance for high solar concentration
,”
AIP Conference Proceedings
, no.
1616
, pp.
211
214
,
2014
.
13.
R.
Winston
,
P.
Benitez
and
A.
Cvetkovic
, “
High-concentration mirror-based Kohler integrating system for tandem solar cells
,”
Photovolt. Energy Conversion, Conf. Rec. 2006 IEEE 4th World Conf.
, vol.
6342
, p.
634213
634213–8
,
2006
.
14.
H.
Baig
,
K.
Heasman
and
T.
Mallick
, “
Non-uniform Illumination in Concentrating Solar Cells
,”
Renewable and Sustainable Energy Reviews
, vol.
16
, pp.
5890
5909
,
2012
.
This content is only available via PDF.