A Cassegrainian optical design reaching ultra-high concentration fluxes (more than 1000 suns) is presented. The system is based on the use of four independent off-axis pairs of parabolic-hyperbolic reflectors that concentrate sunrays onto a central receiver (TOE, tertiary optical element) which works as a Köhler integrator. This design reaches an effective concentration ratio simulated of 1682 suns while using relative small mirrors. The acceptance angle characteristic is analyzed in terms of both the detailed ray tracing on the TOE and the irradiance pattern on the solar cell for a misalignment situation near to the acceptance angle of the design, which is 0.61°.
REFERENCES
1.
Pérez-Higueras
, P
; Fernández
, EF
, High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
, Springer International Publishing
, 2015
.2.
C.
Algora
, I.
Rey-Stolle
, I.
García
, B.
Galiana
, M.
Baudrit
, P.
Espinet
, E.
Barrigón
and J.
Ramón
, “III-V Multijunction Solar Cells for Ultra-High Concentration Photovoltaics
,” Photovoltaic Specialists Conference (PVSC) 34th IEEE
, pp. 001571
–001575
, 2009
.3.
D.
Talavera
, P.
Pérez-Higueras
, J.
Ruíz-Arias
and E.
Fernández
, “Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain
,” Applied Energy
, vol. 151
, p. 49
–59
, 2015
.4.
E. F.
Fernández
, A. J.
García-Loureiro
and G. P.
Smestad
, “Multijunction concentrator solar cells: Analysis and fundamentals,” in High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
, Pérez-Higueras
, Pedro
and Fernández
, Eduardo F.
(Eds.) Springer
, 2015
, pp. 9
–37
.5.
K.
Shanks
, S.
Senthilarasu
and T.
Mallick
, “High-Concentration Optics for Photovoltaic Applications,” in High Concentrator Photovoltaics: Fundamentals, Engineering and Power Plants
, Springer International Publishing
, 2015
, p. 85
–113
.6.
K.
Shanks
, N.
Sarmah
, J. P.
Ferrer-Rodríguez
, S.
Senthilarasu
, K. S.
Reddy
, E. F.
Fernández
and T.
Mallick
, “Theoretical Investigation Considering Manufacturing Errors of a High Concentrating Photovoltaic of Cassegrain design and its Experimental Validation
,” Solar Energy
, vol. 131
, p. 235
–245
, 2016
.7.
J.
Ferrer-Rodríguez
, E.
Fernández
, F.
Almonacid
and P.
Pérez-Higueras
, “Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovolatics module with central receiver
,” Optics Letters
, no. doc. ID 259645, (posted 30 March 2016
, in press).8.
R.
Winston
and W.
Zhang
, “Simple Köhler homogenizers for image-forming solar concentrators
,” AIP Conf. Proc.
, vol. 1407
, p. 105
–108
, 2011
.9.
C.
Liang
and J.
Lin
, “High concentration thin profile solar concentrator utilizing toroidal confocal relay
,” Solar Energy
, no. 122
, p. 264
–270
, 2015
.10.
M.
Dreger
, M.
Wiesenfarth
, A.
Kisser
, T.
Schmid
and A.
Bett
, “Development And Investigation Of A CPV Module With Cassegrain Mirror Optics
,” Proceedings CPV-10
, vol. 177
, 2014
.11.
P.
Benitez
, A.
Cvetkovic
, R.
Winston
, L.
Reed
, J.
Cisneros
, A.
Tovar
, A.
Ritschel
and J.
Wright
, “High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells
,” IEEE Conf. Photovolt. Spec.
, vol. 1
, pp. 690
–693
, 2006
.12.
K.
Shanks
, N.
Sarmah
, K.
Reddy
and T.
Mallick
, “The design of a parabolic reflector system with high tracking tolerance for high solar concentration
,” AIP Conference Proceedings
, no. 1616
, pp. 211
–214
, 2014
.13.
R.
Winston
, P.
Benitez
and A.
Cvetkovic
, “High-concentration mirror-based Kohler integrating system for tandem solar cells
,” Photovolt. Energy Conversion, Conf. Rec. 2006 IEEE 4th World Conf.
, vol. 6342
, p. 634213
–634213–8
, 2006
.14.
H.
Baig
, K.
Heasman
and T.
Mallick
, “Non-uniform Illumination in Concentrating Solar Cells
,” Renewable and Sustainable Energy Reviews
, vol. 16
, pp. 5890
–5909
, 2012
.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)