This paper addresses the problem of finding a Bayesian net representation of the probability function that agrees with the distributions of multiple consistent datasets and otherwise has maximum entropy. We give a general algorithm which is significantly more efficient than the standard brute-force approach. Furthermore, we show that in a wide range of cases such a Bayesian net can be obtained without solving any optimisation problem.

1.
J.
Williamson
,
In defence of objective Bayesianism
(
Oxford University Press
,
Oxford
,
2010
).
2.
J. B.
Paris
,
The uncertain reasoner’s companion
(
Cambridge University Press
,
Cambridge
,
1994
).
3.
J.
Williamson
,
Bayesian Nets and Causality
(
Oxford University Press
,
2005
).
4.
R. E.
Neapolitan
,
Learning Bayesian Networks
(
Pearson
,
2003
).
5.
I.
Tsamardinos
,
L.
Brown
, and
C. F.
Aliferis
,
Machine Learning
65
,
31
78
(
2006
).
6.
A.
Berry
,
J. R. S.
Blair
,
P.
Heggernes
, and
B. W.
Peyton
,
Algorithmica
39
,
287
298
(
2004
).
7.
D. R.
Fulkerson
and
O.
Gross
,
Pacific Journal of Mathematics
15
,
835
855
(
1965
).
8.
A.
Berry
and
R.
Pogorelcnik
,
Information Processing Letters
111
,
508
511
(
2011
).
9.
D.
Dor
and
M.
Tarsi
, “A simple algorithm to construct a consistent extension of a partially oriented graph,”
Tech. Rep.
(
UCLA
,
1992
).
This content is only available via PDF.