In this paper, G denotes a dihedral group of order 2n and Ω denotes the set of all subsets of all commuting elements of size two in the form of (a,b), where a and b commute and |a| = |b| = 2. By extending the concept of commutativity degree, the probability that an element of a group fixes a set can be acquired using the group actions on set. In this paper, the probability that an element of G fixes the set Ω under regular action is computed. The results obtained are then applied to graph theory, more precisely to generalized conjugacy class graph and orbit graph.

1.
G.
Miller
,
Proc. Nat. Acad. Sci. USA
30
(
2
,
25
28
(
1944
).
2.
G.
Gustafson
,
The American Mathematical Monthly
80
(
9
,
1031
1034
(
1973
).
3.
D.
MacHale
,
The Mathematical Gazette
58
(
405
,
199
202
(
1974
).
4.
M. A.
El-sanfaz
,
N. H.
Sarmin
and
S. M. S.
Omer
,
International Journal of Applied Mathematics and Statistics
52
(
1
,
1
6
(
2014
).
5.
J.
Bondy
and
G.
Murty
, 5th Ed.
Graph Theory with Application
(
North Holand
,
Boston New York
,
1982
).
6.
C.
Godsil
and
G.
Royle
, 4th Ed.
Algebraic Graph Theory
(
Springer
,
Boston New York
,
2001
).
7.
J. K.
Xu
, 5th Ed.
Theory and Application of Graph
(
Academic Publishers
,
Boston New York
,
2003
).
8.
E. A.
Bertram
,
M.
Herzog
and
A.
Man
,
Bull London Math Soc.
,
22
,
569
575
(
1990
).
9.
S. M. S.
Omer
,
N. H.
Sarmin
and
A.
Erfanian
, “
Generalized conjugacy class graph of some finite non-abelian groups
,” in
International Conference on Mathematics, Engineering and Industrial Applications 2014
,
AIP Conference Proceedings
1660
, (
2015
), pp.
010001
.
10.
S. M. S.
Omer
,
N. H.
Sarmin
and
A.
Erfanian
,
International Journal of Pure and Applied Mathematics
102
(
4
,
747
755
(
2015
).
11.
M. A.
El-sanfaz
,
N. H.
Sarmin
and
S. M. S.
Omer
,
World Applied Sciences Journal
32
(
3
,
459
464
(
2014
).
12.
M. A.
El-sanfaz
,
N. H.
Sarmin
and
S. M. S.
Omer
,
Jurnal Teknologi
71
(
1
,
7
10
(
2014
).
13.
M. A.
El-sanfaz
N. H.
Sarmin
and
S. M. S.
Omer
,
International Journal of Mathematical Analysis
.
9
(
4
),
161
167
(
2014
).
14.
M. A.
El-sanfaz
and
N. H.
Sarmin
,
Global Journal of Pure and Applied Mathematics
11
(
2
,
899
908
(
2015
).
15.
M.
Bianchi
,
D.
Chillag
,
A.
Mauri
,
M.
Herzog
and
C.
Scoppola
,
Arch Math
58
,
126
132
(
1992
).
16.
A.
Moreto
,
G.
Qian
and
W.
Shi
,
Arch. Math
85
,
101
107
(
2005
).
17.
X.
You
,
G.
Qian
and
W.
Shi
, arXivmath0510015 [math.GR]. (
2005
).
18.
K.
Moradipour
,
N. H.
Sarmin
and
A.
Erfanian
,
Journal of Basic and Applied Scientific Research
.
3
(
1
,
898
902
(
2013
).
19.
N. H.
Sarmin
,
A.
Erfanian
and
S. M. S.
Omer
,
Some applications of metacyclic 2-groups of negative type in
The 3rd International Conference on Computer Engineering and Mathematical Sciences, Conference proceedings
, (
2014
), pp.
120
124
.
20.
S. M. S.
Omer
,
N. H.
Sarmin
and
A.
Erfanian
, in
The Proceedings of The 3rd International Conference on Mathematical Sciences
,
AIP Conference Proceedings
1602
, (
2014
), pp.
863
.
21.
S. M. S.
Omer
,
N. H.
Sarmin
and
A.
Erfanian
,
Indian Journal of Science and Technology
7
(
12
,
2113
2117
(
2014
).
22.
J. S.
Rose
,
A Course on Group Theory
(
Courier Corporation
,
1994
).
This content is only available via PDF.