The solution of a problem that involves uncertainty data that is characterized by complex process in which the phenomenon of incomplete information obtained is difficult to handle. Various mathematical models have been developed to handle problems involving uncertainty data. This paper introduced new concept of geometric modeling with intuitionistic fuzzy called intuitionistic fuzzy Bezier model. This model is constructed through intuitionistic fuzzy set theory and based on intuitionistic fuzzy number and intuitionistic fuzzy relation. A new control point namely intuitionistic fuzzy control point is defined. Next, the new control point is blended with the spline basis function to developed intuitionistic fuzzy Bezier model and the curve is shaped.

1.
L. A.
Zadeh
,
Information and Control
,
8
,
338
353
(
1965
).
2.
K. T.
Atanassov
, “Intuitionistic Fuzzy Sets”,
VII ITKR’s Session
,
Sofia, Bulgarian
,
1983
.
3.
A. M.
Anile
,
B.
Falcidieno
,
G.
Gallo
,
M.
Spagnuolo
,
S.
Spinello
,
Fuzzy Sets and Systems
,
113
(
3
),
397
410
(
2000
).
4.
O.
Kaleva
,
Fuzzy Sets and Systems
,
61
(
1
),
63
70
(
1994
).
5.
A. F.
Wahab
,
R.
Zakaria
and
J. M.
Ali
, “Fuzzy Interpolation Rational Bezier Curve” in
Imaging and Visualization
,
7ᵗʰ International Conference on Computer Graphics
,
Sydney, NSW
,
2010
, pp.
63
67
.
6.
A. F.
Wahab
and
R.
Zakaria
,
Applied Mathematical Sciences
,
6
(
81
),
4005
4016
(
2012
).
7.
R.
Zakaria
and
A.F.
Wahab
,
Applied Mathematical Sciences
,
7
(
45
),
2229
2238
(
2013
).
8.
K. T
Atanassov
,
Fuzzy Sets and Systems
,
20
,
87
96
(
1986
).
9.
K. T.
Atanassov
, “
Intuitionistic Fuzzy Sets: Theory and Applications”
,
Physica-Verlag HD
,
1999
, pp.
1
9
.
10.
K. T.
Atanassov
, “
On Intuitionistic Fuzzy Sets Theory”
,
Springer
,
2012
, pp.
1
12
.
11.
E.
Szmidt
and
J.
Kacprzyk
,
Fuzzy Sets and Systems
,
118
,
467
477
(
2001
).
12.
D.
Dubois
and
H.
Prade
,
Fuzzy Sets and Systems
,
24
,
279
300
(
1987
).
13.
D.
Dubois
and
H.
Prade
,
Intenational Journal of Systems Science
,
9
,
613
626
(
1978
).
14.
A. K.
Shaw
and
T. K.
Roy
,
International Journal of Fuzzy Mathematics and Systems
,
2
(
4
),
363
382
(
2012
)
15.
L. A.
Zadeh
,
Information Sciences
,
3
,
177
206
(
1971
).
16.
A.
Rosenfeld
, “Fuzzy Graphs”, in
Fuzzy Sets and their Applications to Cognitive and Decision Processes
,
Academic Press
, pp
77
95
.
1975
.
17.
A.
Kauffman
,
Introduction to the Theory of Fuzzy Subsets
, Vol
I
.
New York, San Francisco, London
.
1975
.
18.
H. J.
Zimmermann
, “
Fuzzy Set Theory and Its Application
”,
Kluwer Academic
,
New York, NY, USA
,
1985
, pp.
47
56
.
19.
P.
Burillo
,
H.
Bustince
,
Notes on IFS
,
2
,
93
103
(
1995
).
20.
A. F.
Wahab
,
J. M.
Ali
and
A. A.
Majid
, “
Fuzzy Geometric Modeling
” in
Imaging and Visualization
,
International Conference on Computer Graphics
,
2004
, pp.
227
232
.
21.
A. F.
Wahab
,
J. M.
Ali
,
A. A.
Majid
and
A. O. M.
Tap
, “
Fuzzy Set in Geomeric Modeling
” in
Imaging and Visualization
,
6ᵗʰ International Conference on Computer Graphics
,
Tianjin
,
2009
, pp.
276
280
.
22.
A. F.
Wahab
,
J. M.
Ali
,
A. A.
Majid
and
A. O. M.
Tap
,
Sains Malaysiana
,
39
(
4
),
661
670
(
2010
).
This content is only available via PDF.