The Ahlfors map and Szegö kernel are both classically related to each other. Ahlfors map can be computed using Szegö kernel without relying on the zeros of Ahlfors map. The Szegö kernel is a solution of a Fredholm integral equation of the second kind with the Kerzman-Stein kernel. The exact zeros of the Ahlfors map are unknown except for the annulus region. This paper presents a numerical method for computing the zeros of the Ahlfors map of any bounded doubly connected region. The method depends on the values of Szegö kernel, its derivative and the derivative of boundary correspondence function of Ahlfors map. Using combination of Nyström method, GMRES method, fast multiple method and Newton’s method, the numerical examples presented here prove the effectiveness of the proposed method.

1.
N.
Kerzman
and
E. M.
Stein
,
Mathematische Annalen
236
,
85
93
(
1978
).
2.
N.
Kerzman
and
M.R.
Trummer
,
Journal of Computational and Applied Mathematics
14
,
111
123
(
1986
).
3.
B.
Lee
and
M. R.
Trummer
,
Electronic Transactions on Numerical Analysis
2
,
22
43
(
1994
)
4.
K.
Nazar
,
A. H. M.
Murid
and
A. W. K.
Sangawi
,
Jounal Teknologi
,
73
,
1
9
(
2015
).
5.
M. M. S.
Nasser
,
Computational Methods and Function Theory
9
,
127
143
(
2009
).
6.
M. M. S.
Nasser
,
SIAM Journal on Scientific Computing
31
,
1695
1715
(
2009
).
7.
M. M. S.
Nasser
,
Journal of Mathematical Analysis and Applications
382
,
47
56
(
2011
).
8.
M. M. S.
Nasser
,
Journal of Mathematical Analysis and Applications
398
(
2
),
729
743
(
2012
).
9.
M. M. S.
Nasser
and
F. A. A.
Al-Shihri
,
SIAM Journal on Scientific Computing
35
,
A1736
A1760
(
2013
).
10.
S. T.
O’Donnell
and
V.
Rokhlin
,
SIAM journal on scientific and statistical computing
10
,
475
487
(
1989
).
11.
A. W. K.
Sangawi
, “
Boundary Integral Equations for Conformal Mappings of Bounded Multiply Connected Regions
”, PhD thesis,
Universiti Teknologi Malaysia
,
2012
.
12.
A. W. K.
Sangawi
,
A. H. M.
Murid
and
M. M. S.
Nasser
,
Applied Mathematics and Computation
218
,
2055
2068
(
2011
).
13.
A. W. K.
Sangawi
,
A. H. M.
Murid
and
M. M. S.
Nasser
,
Abstract and Applied Analysis
.
Hindawi Publishing Corporation
,
2012
.
14.
A. W. K.
Sangawi
,
A. H. M.
Murid
,
International Journal of Science & Engineering Research
4
(
10
),
1447
1454
(
2013
).
15.
A. W. K.
Sangawi
,
Applied Mathematics and Computation
228
,
520
530
(
2014
).
16.
A. W. K.
Sangawi
,
Advances in Computational Mathematics
,
1
17
(
2014
).
17.
A. A. M.
Yunus
,
A. H. M.
Murid
and
M. M. S.
Nasser
,
Abstract and Applied Analysis
,
Hindawi Publishing Corporation
,
2012
.
18.
S.
Bell
,
Journal of mathematical analysis and applications
120
,
211
217
(
1986
).
19.
A. H. M.
Murid
and
M. R. M.
Razali
,
Matematika
15
,
79
93
(
1999
).
20.
M. M. S.
Nasser
and
A. H. M.
Murid
,
Clifford Anal. Clifford Algebr. Appl
,
307
312
(
2013
).
21.
T. J.
Tegtmeyer
, “
The Ahlfors Map and Szegö Kernel in Multiply Connected Domains
,” PhD thesis,
Purdue University
,
1998
.
22.
T. J.
Tegtmeyer
and
A. D.
Thomas
,
Rocky Mountain J. Math
,
709
723
(
1999
).
23.
L. V.
Ahlfors
,
Duke Math. Journal
14
,
1
11
(
1947
).
24.
N.
Eagan
,
G.
Hauser
and
T.
Flaherty
,
Newton’s Method on a System of Nonlinear Equations
, (https://www.math.cmu.edu/CNA/summerinstitute/2014/projects/SUAMIrevisedpaper.pdf).
25.
P.J.
Davis
,
P.
Rabinowitz
,
Methods of Numerical Integration
, 2nd Edition,
Academic Press
,
Orlando
,
1984
.
This content is only available via PDF.