Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

1.
B. A.
Palmer
,
A.
Morte-Ródenas
,
B. M.
Kariuki
,
K. D. M.
Harris
and
S. P.
Collins
,
J. Phys. Chem. Lett.
2
,
2346
2351
(
2011
).
2.
B. A.
Palmer
,
G. R.
Edwards-Gau
,
A.
Morte-Ródenas
,
B. M.
Kariuki
,
G. K.
Lim
,
K. D. M.
Harris
,
I. P.
Dolbnya
and
S. P.
Collins
,
J. Phys. Chem. Lett.
3
,
3216
3222
(
2012
).
3.
J. A.
Bearden
and
A. F.
Burr
,
Rev. Mod. Phys.
39
,
125
142
(
1967
).
4.
B. A.
Palmer
,
G. R.
Edwards-Gau
,
B. M.
Kariuki
,
K. D. M.
Harris
,
I. P.
Dolbnya
and
S. P.
Collins
,
Science
344
,
1013
1016
(
2014
).
5.
B. A.
Palmer
,
G. R.
Edwards-Gau
,
B. M.
Kariuki
,
K. D. M.
Harris
,
I. P.
Dolbnya
,
S. P.
Collins
and
J. P.
Sutter
,
J. Phys. Chem. Lett.
6
,
561
567
(
2015
).
6.
J. P.
Sutter
,
I. P.
Dolbnya
,
S. P.
Collins
,
K. D. M.
Harris
,
G. R.
Edwards-Gau
and
B. A.
Palmer
,
J. Appl. Phys.
117
,
164902
(
2015
).
7.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd edition (
John Wiley & Sons
,
New York
,
1975
), pp.
672
679
.
8.
M.
Sánchez del Río
,
N.
Canestrari
,
F.
Jiang
and
F.
Cerrina
,
J. Synchrotron Rad.
18
,
708
716
(
2011
).
9.
W. H.
Zachariasen
,
Theory of X-Ray Diffraction in Crystals
(
John Wiley & Sons
,
New York
,
1945
), pp.
82
147
.
10.
Yu. V.
Shvyd’ko
,
E.
Gerdau
,
J.
Jäschke
,
O.
Leupold
,
M.
Lucht
and
H. D.
Rüter
,
Phys. Rev. B
57
,
4968
4971
(
1998
).
This content is only available via PDF.