Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficient closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.

1.
Mader
K.
4Quant Website
. http://4quant.com/. Available at: http://4quant.com/.
2.
Tuegel
EJ
,
Ingraffea
AR
,
Eason
TG
,
Spottswood
SM
.
Reengineering aircraft structural life prediction using a digital twin
.
Int J Aerosp Eng.
2011
;2011. doi:.
3.
Blair
J
,
Canon
RS
,
Deslippe
J
, et al 
High performance data management and analysis for tomography
. In:
SPIE Optical Engineering+ Applications
.;
2014
:
92121G
92121G
.
4.
Dart
E
,
Rotman
L
,
Tierney
B
,
Hester
M
,
Zurawski
J.
The science DMZ: A network design pattern for data-intensive science
.
Sci Program.
2014
;
22
(
2
):
173
185
. doi:.
5.
Deslippe
J
,
Essiari
A
,
Patton
SJ
, et al 
Workflow Management for Real-Time Analysis of Lightsource Experiments
.
2014 9th Work Work Support Large-Scale Sci.
2014
:
31
40
. doi:.
6.
Ushizima
D
,
Perciano
T
,
Krishnan
H
,
Loring
B.
Structure Recognition from High Resolution Images of Ceramic Composites
. In:
2014 IEEE International Conference on Big Data
.;
2014
:
683
691
.
7.
Ushizima
D
,
Parkinson
D
,
Nico
P
, et al 
Statistical segmentation and porosity quantification of 3d x-ray microtomography
. In:
SPIE Optical Engineering+ Applications
.;
2011
:
813502
.
8.
Marchesini
S
,
Tu
Y-C
,
Wu
H-T.
Alternating projection, ptychographic imaging and phase synchronization
.
Appl Comput Harmon Anal.
2015
;(June). doi:.
9.
Yang
C
,
Qian
J
,
Schirotzek
a.
,
Maia
F
,
Marchesini
S.
Iterative Algorithms for Ptychographic Phase
Retrieval. 2011;0:32. Available at: http://arxiv.org/abs/1105.5628.
10.
Yu
Y-S
,
Kim
C
,
Shapiro
D a.
, et al 
Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4
.
Nano Lett.
2015
:150618150444005. doi:.
11.
Sethian
J.
CAMERA website
. Available at: http://camera.lbl.gov/software/sharp_camera_downloads.
12.
Hexemer
A
,
Parkinson
D
,
Tull
C.
Information Technology/Large-Scale Data Handling
.
Synchrotron Radiat News
.
2015
;
28
(
2
):
2
3
. doi:.
13.
Mokso
R
,
Marone
F
,
Irvine
S
, et al 
Advantages of phase retrieval for fast x-ray tomographic microscopy
.
J Phys D Appl Phys.
2013
;
46
(
49
):
494004
. doi:.
14.
Gürsoy
D
,
De Carlo
F
,
Xiao
X
,
Jacobsen
C.
TomoPy: a framework for the analysis of synchrotron tomographic data
.
J Synchrotron Radiat.
2014
;
21
(
5
):
1188
1193
. doi:.
15.
Vogelgesang
M.
,
Chilingaryan
S.
,
Rolo
TDS.
,
Kopmann
A.
UFO: A scalable GPU-based image processing framework for on-line monitoring
.
Proc 14th IEEE Int Conf High Perform Comput Commun HPCC-2012 - 9th IEEE Int Conf Embed Softw Syst ICESS-2012
.
2012
:
824
829
. doi:.
16.
Centres
H.
High Data Rate Processing and Analysis Initiative (HDRI)
.;
2014
.
This content is only available via PDF.