The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the “conventional” option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

1.
Superintendencia de Servicios Sanitarios
, “
Informe de Gestión del Sector Sanitario
,”
2012
. [Online]. Available: http://www.siss.gob.cl/577/articles-9976_recurso_1.pdf.
2.
M.
González
, “
Desalación para suministro de agua potable en el norte de Chile: Caso de Aguas de Antofagasta S.A.
,” in
II Seminario Internacional de Desalación en Antofagasta
,
Antofagasta
,
2010
.
4.
V.
Pérez
and
C.
Cifuentes
, “
Inversión en la Minería Chilena. Cartera de Proyectos 2012
,”
2012
. [Online]. Available: http://www.cochilco.cl/archivos/presentaciones/20120810125147_PresentaciónInversionesMedianaMinería(MEDMIN2012).pdf.
6.
Ministerio de Energía
, “
Balances energéticos - BNE 2012
,”
2012
. [Online]. Available: http://antiguo.minenergia.cl/minwww/opencms/14_portal_informacion/06_Estadisticas/Balances_Energ.html.
7.
R.
Brantes
and
J. I.
Zeballos
, “
Actualización de información sobre el consumo de energía asociado a la minería del cobre del año 2011
,”
Comisión Chilena del Cobre
,
2012
.
8.
©
GeoModel Solar
, «
SolarGIS
2014
. [Online]. Available: https://commons.wikimedia.org/wiki/File:SolarGIS-Solar-map-World-map-en.png.
9.
W. A.
Jara Velásquez
, “
Estudio comparativo de plantas de desalinización para abastecimiento de agua en la ciudad de Ica
,” in
8° Congreso Iberoamericano de Ingeniería Mecánica
,
Cuzco
,
2007
.
10.
J.
Palacios
, “
Nuevo desarrollo tecnológico en el diseño, construcción, rendimiento y seguridad de reactores
,” in
Perspectivas de la Generación Nucleoeléctrica en América Latina y el Caribe
,
2010
.
11.
S.
Loutatidou
and
H. A.
Arafat
, “
Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy
,”
Desalination
, vol.
365
, pp.
277
292
,
2015
.
12.
H.
Sharon
and
K. S.
Reddy
, “
A review of solar energy driven desalination technologies
,”
Renewable and Sustainable Energy Reviews
, vol.
41
, pp.
1080
1118
,
2015
.
13.
A.
Fernández-García
,
E.
Rojas
,
M.
Pérez
,
R.
Silva
,
Q.
Hernández-Escobedo
and
F.
Manzano-Agugliaro
, “
A parabolic-trough collector for cleaner industrial process heat
,”
Journal of Cleaner Production
, vol.
89
, pp.
272
285
,
2015
.
14.
B.
Peris
,
J.
Navarro-Esbrí
,
F.
Molés
,
M.
González
and
A.
Mota-Babiloni
, “
Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources
,”
Energy
, vol.
82
, pp.
269
276
,
2015
.
15.
U.
Sahoo
,
R.
Kumar
,
P. C.
Pant
and
R.
Chaudhury
, “
Scope and sustainability of hybrid solar–biomass power plant with cooling, desalination in polygeneration process in India
,”
Renewable and Sustainable Energy Reviews
, vol.
51
, pp.
304
316
,
2015
.
16.
A. I.
Zúñiga
, “
Consumo de agua en la industria minera chilena: situación actual y proyecciones
,”
2008
. [Online]. Available: http://www.concesiones.cl/publicacionesyestudios/seminariosytalleres/Documents/SeminarioDesalinizacionAnaIsabelZuniga.pdf. [Accessed 2013].
17.
D.
Alarcón
,
J.
Blanco
,
E.
Zarza
,
S.
Malato
and
J.
León
, “
Comparación económica de procesos de desalación de agua de mar: el reto de la destilación multi-efecto con energía solar
,” in
Congreso Ibérico sobre Gestión y Planificación del agua
,
Sevilla
,
2002
.
18.
J. C.
Ibrahim Perera
,
Desalación de aguas
,
Colegio de Ingenieros de Caminos, Canales y Puertos
,
1998
.
19.
Private communications with Chilean mining companies
,
2011
.
20.
B.
Herrera
, “
Energías Renovables No Convencionales (ERNC): Situación actual y futura
,”
Electricidad. La revista energética de Chile
,
2012
. [Online]. Available: http://www.revistaei.cl/noticias/index_neo_opinion.php?id=30356. [Accessed 2013].
21.
J. F.
Servert
,
E.
Cerrajero
,
E.
Fuentealba
and
M.
Cortés
, “
Assessment of the impact of financial and fiscal incentives for the development of utility-scale solar energy projects in northern Chile
,”
Energy Procedia
, no.
49
, pp.
1885
1895
,
2014
.
This content is only available via PDF.