In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project “Solar Fuels and Industrial Processes” from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

1.
US DOE Hydrogen program project
:
II.F.2 Solar High-Temperature Water-Splitting Cycle with Quantum Boost
.
FY 2010 Annual Progress Report
.
2.
Steinfeld
A.
,
Int J. Hydrogen Energy
,
27
(
6
),
611
9
,
2002
.
3.
Abanades
S.
,
Charvin
P.
,
Flamant
G.
,
Neveu
P.
,
Energy
,
31
(
14
),
2805
2822
,
2006
.
4.
Charvin
P.
,
Abanades
S.
,
Flamant
G.
,
Lemort
F.
,
Energy
,
32
(
7
),
1124
1133
,
2007
.
5.
Agrafiotis
C.
,
Roeb
M.
,
Konstandopoulos
A.G.
,
Nalbandian
L.
,
Zaspalis
V.T.
,
Sattler
C.
,
Stobbe
P.
,
Steele
A.M.
,
Solar Energy
,
79
(
4
),
4.9
421
,
2005
.
6.
Diver
R.B.
,
Miller
J.E.
,
Allendorf
M.D.
,
Siegel
N.P.
,
Hogan
R.E.
,
Solar thermochemical water-splitting ferrite-cycle heat engine
,
Proceedings of International Solar Energy Conference
, n° 99147, July
2006
,
Denver, CO
.
7.
Perkins
C.
,
Weimer
A.W.
,
29
(
15
),
1587
1599
,
2004
.
8.
Tamaura
Y.
,
Ueda
Y.
,
Matsunami
J.
,
Hasegawa
N.
,
Nezuka
M.
,
Sano
T.
,
Solar Energy
,
65
(
1
),
55
57
,
1999
.
9.
Kaneko
H.
,
Kodama
T.
,
Gokon
N.
,
Tamaura
Y.
,
Lovegrove
K.
,
Luzzi
A.
,
Solar Energy
,
76
,
317
322
,
2004
.
10.
Kodama
T.
,
Kondoh
Y.
,
Yamamoto
R.
,
Andou
H.
,
Satou
N.
,
Solar Energy
,
78
(
5
),
623
631
,
2005
.
11.
Abanades
S.
,
Flamant
G.
,
Solar Energy
,
80
(
12
),
1611
1623
,
2006
.
12.
Charvin
P.
,
Abanades
S.
,
Beche
E.
,
Lemort
F.
,
Flamant
G.
,
Solid State Ionics
,
180
(
14-16
),
1003
1010
,
2009
.
13.
Schunk
L.O.
,
Lipinski
W.
,
Steinfeld
A.
,
Chemical Engineering Journal
,
150
,
502
508
,
2009
.
14.
Dombrovsky
L.A.
,
Lipinski
W.
,
Steinfeld
A.
,
Journal of Quantitative Spectroscopy & Radiative Transfer
,
103
,
601
610
,
2007
.
15.
Villafán-Vidales
H.I.
,
Arancibia-Bulnes
C.A.
,
Dehesa-Carrasco
U.
,
Romero-Paredes
H.
,
Int J Hydrogen Energy
,
34
(
1
),
115
124
,
2009
.
16.
Romero-Paredes
H
,
Torres
A
,
Ambriz
JJ
. (
1997
)
Characterization of a thermochemical reactor for thermal solar energy
.
Renew Energy
,
10
(
2
):
231
4
.
17.
Valdes-Pelayo
P.J.
,
Arancibia-Bulnes
C.
,
Villafan-Vidales
H
,
Romero-Paredes
,
H.
, (
2015
), “
Radiative transfer model of solar thermochemical multi-tubular reactor: Geometric Optimization
”,
IEC 2015
, pp.
164
168
.
18.
Whitaker
,
S.
, (
1992
).
Improved constraints for the principle of local thermal equilibrium
.
Ind. Eng. Chem. Res.
30
(
5
),
978
983
.
19.
Whitaker
,
S.
, (
1999
).
The Method of Volume Averaging
.
Kluwer Academic Publishers
.
20.
Bulfin
.
B.
,
Lowe
A. J.
,
Keogh.
,
Murphy
B. E.
,
Lübben
O.
,
Krasnikov
S. A.
and
Shvets
I. V.
(
2013
).
Analytical Model of CeO2 Oxidation and Reduction
.
J Phys Chem. C
,
117
,
24129
24137
.
This content is only available via PDF.