The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today’s technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.

1.
Sengupta
,
M.
,
A.
Habte
,
S.
Kurtz
,
A.
Dobos
,
S.
Wilbert
,
E.
Lorenz
, and
R.
Perez
.
2015
.
Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications
, edited by NREL/TP-5D00-63112.
2.
Fernández-Peruchena
,
C. M.
, &
Bernardos
,
A.
(
2015
).
A comparison of one-minute probability density distributions of global horizontal solar irradiance conditioned to the optical air mass and hourly averages in different climate zones
.
Solar Energy
,
112
,
425
436
.
3.
Ho
,
C. K.
, &
Kolb
,
G. J.
(
2010
).
Incorporating uncertainty into probabilistic performance models of concentrating solar power plants
.
Journal of Solar Energy Engineering
,
132
(
3
),
031012
.
4.
Fernández-Peruchena
,
C. M.
,
Gastón
,
M.
,
Sánchez
,
M.
,
García-Barberena
,
J.
,
Blanco
,
M.
, &
Bernardos
,
A.
(
2015
).
MUS: A multiscale stochastic model for generating plausible meteorological years designed for multiyear solar energy yield simulations
.
Solar Energy
,
120
,
244
256
.
5.
Röttinger
,
N.
,
Remann
,
F.
,
Meyer
,
R.
, &
Telsnig
,
T.
(
2015
).
Calculation of CSP yields with probabilistic meteorological data sets: a case study in Brazil
.
Energy Procedia
,
69
,
2009
2018
.
6.
Peruchena
,
C. F.
,
Blanco
,
M.
, &
Bernardos
,
A.
(
2014
).
Generation of series of high frequency DNI years consistent with annual and monthly long-term averages using measured DNI data
.
Energy Procedia
,
49
,
2321
2329
.
7.
Fernández-Peruchena
,
C. M.
,
Blanco
,
M.
,
Gastón
,
M.
, &
Bernardos
,
A.
(
2015
).
Increasing the temporal resolution of direct normal solar irradiance series in different climatic zones
.
Solar Energy
,
115
,
255
263
.
8.
Hall
,
I. J.
,
Prairie
,
R. R.
,
Anderson
,
H. E.
, &
Boes
,
E. C.
(
1978
).
Generation of a typical meteorological year (No. SAND-78-1096C; CONF-780639-1
).
Sandia Labs
.,
Albuquerque, NM (USA
).
9.
Marion
,
W.
, &
Urban
,
K.
(
1995
). User’s Manual for TMY2s: Typical Meteorological Years: Derived from the 1961-1990 National Solar Radiation Data Base.
National Renewable Energy Laboratory
.
10.
Wilcox
,
S.
, &
Marion
,
W.
(
2008
).
Users manual for TMY3 data sets
(pp.
4
5
).
Golden, CO
:
National Renewable Energy Laboratory
.
11.
Hallgreen
,
L.
1983
. Short Reference Year, SRY. In
Solar Radiation Data
:
Springer
Netherlands
.
12.
Liem
,
S. H.
, &
Van Paassen
,
A. H. C.
(
1983
).
Establishment of short reference years for calculation of annual solar heat gain or energy consumption in residential and commercial buildings
(pp.
32
36
).
Springer
Netherlands
.
13.
Lund
,
H.
(
1982
). Reference Years. In
Solar Radiation Data
(pp.
19
25
).
Springer
Netherlands
.
14.
Cebecauer
,
T.
, &
Suri
,
M.
(
2015
).
Typical Meteorological Year Data: SolarGIS Approach
.
Energy Procedia
,
69
,
1958
1969
.
15.
Košmelj
,
K.
,
Virant
,
D.
&
Jeran
,
M.
(
1993
).
An Optimization Approach to the Problem of Short Reference Year
.
Developments in Statistics and Methodology
:
43
55
.
16.
Kistler
,
B. L.
(
1986
).
A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants
.
Sandia National Laboratories
, Sandia Report No. SAND86-8018.
17.
Tibshirani
,
R.
,
Walther
,
G.
, &
Hastie
,
T.
(
2001
).
Estimating the number of clusters in a data set via the gap statistic
.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
,
63
(
2
),
411
423
.
18.
García-Barberena
,
J.
,
Garcia
,
P.
,
Sanchez
,
M.
,
Blanco
,
M. J.
,
Lasheras
,
C.
,
Padrós
,
A.
, &
Arraiza
,
J.
(
2012
).
Analysis of the influence of operational strategies in plant performance using SimulCET, simulation software for parabolic trough power plants
.
Solar Energy
,
86
(
1
),
53
63
.
This content is only available via PDF.