Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software “Ebsilon Professional”. As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

1.
S.
Warerkar
 et al.,
J SOL ENERG-T ASME
133
(
2
), pp.
021010
1
–7 (
2011
).
2.
S.
Warerkar
 et al.,
Verfahrenstechnik
, no.
4
, pp.
72
73
(
2007
).
3.
E.
Achenbach
,
EXP THERM FLUID SCI
10
(
1
), pp.
17
27
(
1995
).
4.
Verein Deutscher Ingenieure
,
VDI Heat Atlas
(
Springer
,
Berlin, Heidelberg
,
2011
).
5.
N.N., “Technische Chemie II - Filtration, Vorlesung,”
Universität des Saarlandes, Saarbrücken
,
2004
.
6.
B.
Spang
and
W.
Roetzel
,
HEAT MASS TRANSFER
30
, pp.
417
422
(
1995
).
7.
K.-E.
Wirth
,
Zirkulierende Wirbelschichten
, (
Springer
,
Berlin, Heidelberg
,
1990
).
8.
A.
Mersmann
,
CHEM-ING-TECH
39
, pp.
349
353
(
1967
).
9.
H.
Martin
,
CHEM-ING-TECH
52
(
3
), pp.
199
209
,
1980
.
10.
E.-U.
Schlünder
and
E.
Tsotsas
, “
Wärmeübergang zwischen Gas-Feststoff-Wirbelschichten und den Oberflächen eingebauter Heizelemente
” in
Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten
(
Thieme
,
Stuttgart, New York
,
1988
), pp.
216
231
.
11.
D.
Kunii
und
O.
Levenspiel
, “
Heat Transfer between Fluidized Beds and Surfaces
” in
Fluidization Engineering
, (
Butterworth-Heinemann
,
Boston
,
1991
), pp.
313
335
.
12.
H.
Effenberger
,
Dampferzeugung
, (
Springer
,
Berlin, Heidelberg
,
2000
.)
13.
T.
Baumann
and
S.
Zunft
,
J. Phys.: Conf. Ser.
395
012055
(
2012
).
14.
T.
Baumann
,
S.
Zunft
and
R.
Tamme
,
HEAT TRANSFER ENG
35
(
3
), pp.
224
231
(
2014
).
15.
E. U.
Schlünder
,
CHEM ENG PROCESS
18
(
1
), pp.
31
53
(
1984
).
16.
K.
Strauß
,
Kraftwerkstechnik
, (
Springer
,
Heidelberg
,
2009
).
17.
P.
Viebahn
,
Y.
Lechon
and
F.
Trieb
,
Energy Policy
39
(
8
), pp.
4420
4430
(
2011
).
This content is only available via PDF.