A multi-tubular solar thermochemical cavity reactor is proposed and the tubular array optimized. The optimized reactor design aims at operating under different temperatures and carrying out different kinds of thermochemical reactions. The radiation entering the receptacle comes from a solar concentrating system and the reactor consists of a cubic receptacle made of woven graphite, housing nine 2.54 cm diameter tungsten tubes. A model is developed and implemented considering high-temperature radiative transfer at steady state. The temperature distribution within the cavity surfaces is determined by employing a hybrid Monte Carlo-Finite Volume approach. Optimal tube distributions are explored by using a custom-made stochastic, multi-parameter, optimization algorithm. In this way, multiple global maxima are determined. Patterns among all possible optimal tube distributions within the cavity are obtained for different scenarios, by maximizing average tube temperature. From this study, practical guidelines are obtained for future application in the design of solar cavity reactors and more specifically, on the layout of multi tubular arrays to optimize radiative heat transfer.
Skip Nav Destination
,
,
,
Article navigation
31 May 2016
SOLARPACES 2015: International Conference on Concentrating Solar Power and Chemical Energy Systems
13–16 October 2015
Cape Town, South Africa
Research Article|
May 31 2016
Geometric optimization of a solar cubic-cavity multi-tubular reactor Free
P. J. Valades-Pelayo;
P. J. Valades-Pelayo
a)
1Instituto de Energías Renovables,
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, 62580, Temixco, México
Search for other works by this author on:
C. A. Arancibia-Bulnes;
C. A. Arancibia-Bulnes
1Instituto de Energías Renovables,
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, 62580, Temixco, México
Search for other works by this author on:
H. Villafan-Vidales;
H. Villafan-Vidales
1Instituto de Energías Renovables,
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, 62580, Temixco, México
Search for other works by this author on:
H. Romero-Paredes
H. Romero-Paredes
b)
2Departamento de Ingeniería de Procesos e Hidráulica,
Universidad Autónoma Metropolitana-Iztapalapa
, Av. San Rafael Atlixco No.186, 09340, México D.F, México
Search for other works by this author on:
P. J. Valades-Pelayo
1,a)
C. A. Arancibia-Bulnes
1
H. Villafan-Vidales
1
H. Romero-Paredes
2,b)
1Instituto de Energías Renovables,
Universidad Nacional Autónoma de México
, Privada Xochicalco s/n, 62580, Temixco, México
2Departamento de Ingeniería de Procesos e Hidráulica,
Universidad Autónoma Metropolitana-Iztapalapa
, Av. San Rafael Atlixco No.186, 09340, México D.F, México
a)
Corresponding authors: [email protected]
AIP Conf. Proc. 1734, 030037 (2016)
Citation
P. J. Valades-Pelayo, C. A. Arancibia-Bulnes, H. Villafan-Vidales, H. Romero-Paredes; Geometric optimization of a solar cubic-cavity multi-tubular reactor. AIP Conf. Proc. 31 May 2016; 1734 (1): 030037. https://doi.org/10.1063/1.4949089
Download citation file:
Citing articles via
The implementation of reflective assessment using Gibbs’ reflective cycle in assessing students’ writing skill
Lala Nurlatifah, Pupung Purnawarman, et al.
Effect of coupling agent type on the self-cleaning and anti-reflective behaviour of advance nanocoating for PV panels application
Taha Tareq Mohammed, Hadia Kadhim Judran, et al.
Classification data mining with Laplacian Smoothing on Naïve Bayes method
Ananda P. Noto, Dewi R. S. Saputro
Related Content
A scanning tunneling microscope for ultrahigh vacuum atom–surface interaction studies
J. Vac. Sci. Technol. A (January 1990)
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
AIP Conf. Proc. (May 2016)
Insights on the thermal effect of geometric parameters of a multi-channel monolithic zirconia absorber with supported ZnFe2O4 thin-film under concentrated solar irradiance
AIP Conf. Proc. (November 2018)
Extensible 3D architecture for superconducting quantum computing
Appl. Phys. Lett. (June 2017)