A systematic approach is presented for the sampling and interpolation over sun path. The annual sun path is described in terms of the ecliptic longitude and hour angle so that all possible positions of the sun are mapped on a rectangular domain. This enables the use of many efficient algorithms, and the bicubic interpolation with Catmull–Rom splines is proposed. It is shown that a sufficiently good accuracy can be achieved with as little as 32 sampling points for a year.

1.
M.
Sánchez
and
M.
Romero
, “
Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces
,”
Sol. Energy
80
,
861
874
(
2006
).
2.
C.-J.
Winter
,
R. L.
Sizmann
, and
L. L.
Vant-Hull
,
Solar Power Plants: Fundamentals, Technology, Systems, Economics
(
Springer Berlin Heidelberg
,
1991
).
3.
N.
Blair
,
A. P.
Dobos
,
J.
Freeman
,
T.
Neises
,
M.
Wagner
,
T.
Ferguson
,
P.
Gilman
, and
S.
Janzou
,
System Advisor Model, SAM 2014.1.14: General Description
(
National Renewable Energy Laboratory (NREL
),
Golden, CO.
,
2014
).
4.
A.
Ramos
and
F.
Ramos
, “
Strategies in tower solar power plant optimization
,”
Sol. Energy
86
,
2536
2548
(
2012
).
5.
C. J.
Noone
,
M.
Torrilhon
, and
A.
Mitsos
, “
Heliostat field optimization: A new computationally efficient model and biomimetic layout
,”
Sol. Energy
86
,
792
803
(
2012
).
6.
M.
Binotti
,
G.
Manzolini
, and
G.
Zhu
, “
An alternative methodology to treat solar radiation data for the optical efficiency estimate of different types of collectors
,”
Sol. Energy
110
,
807
817
(
2014
).
7.
F. J.
Collado
and
J. A.
Turégano
, “
Calculation of the annual thermal energy supplied by a defined heliostat field
,”
Sol. Energy
42
,
149
165
(
1989
).
8.
F. J.
Collado
and
J.
Guallar
, “
A review of optimized design layouts for solar power tower plants with campo code
,”
Renew. Sustain. Energy Rev.
20
,
142
154
(
2013
).
9.
D. R.
Myers
,
Solar Radiation: Practical Modeling for Renewable Energy Applications
(
CRC Press
,
2013
).
10.
B. L.
Kistler
,
A User’s Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
(
Sandia National Laboratories
,
1986
).
11.
E.
Lengyel
,
Mathematics for 3D Game Programming and Computer Graphics
, Third Edition (
Cengage Learning
,
2012
).
12.
C. A.
Gueymard
, “
Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models
,”
Sol. Energy
86
,
2145
2169
(
2012
).
13.
P.
Ineichen
, “
A broadband simplified version of the Solis clear sky model
,”
Sol. Energy
82
,
758
762
(
2008
).
14.
A. B.
Sproul
, “
Derivation of the solar geometric relationships using vector analysis
,”
Renew. Energy
32
,
1187
1205
(
2007
).
15.
C. M. F.
Peruchena
,
M.
Blanco
, and
A.
Bernardos
, “
Generation of series of high frequency DNI years consistent with annual and monthly long-term averages using measured DNI data
,”
Energy Procedia
49
,
2321
2329
(
2014
).
16.
M. J.
Blanco
,
J. M.
Amieva
, and
A.
Mancillas
, “
The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems
,”
Proceedings of IMECE 157–164
(
2005
).
17.
M. J.
Blanco
,
A.
Mutuberria
, and
D.
Martinez
, “
Experimental Validation of Tonatiuh Using the Plataforma Solar de Almería Secondary Concentrator Test Campaign Data
,”
Proc. SolarPACES
(
2010
).
18.
M.
Blanco
,
A.
Mutuberria
,
A.
Monreal
, and
R.
Albert
, “
Results of the Empirical Validation of Tonatiuh at Mini-Pegase CNRS-PROMES Facility
,”
Proc SolarPACES
(
2011
).
This content is only available via PDF.