Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

1.
W. N. Al
Nasser
and
F.H.
Al Salhi
,
Chem. Eng. Sci.
86
,
70
77
(
2013
).
2.
Y.
Zhang
,
H.
Shaw
,
R.
Farquhar
, and
R.
Dawe
,
J. Pet. Sci. Eng.
29
,
85
95
(
2001
).
3.
S. P.
Gopi
and
V.K.
Subramanian
,
Desalination
297
,
38
47
(
2012
).
4.
E. M.
Flaten
,
M.
Seiersten
, and
J.-P.
Andreassen
,
J. Cryst. Growth
311
,
3533
3538
(
2009
).
5.
J. D.
Rodriguez-Blanco
,
S.
Shaw
, and
L.G.
Benning
,
Nanoscale
3
,
265
271
(
2011
).
6.
M. A.
Popescu
,
R.
Isopescu
,
C.
Matei
,
G.
Fagarasan
, and
V.
Plesu
,
Adv. Powder Technol.
25
,
500
507
(
2014
).
7.
S.
Muryanto
,
A.P.
Bayuseno
,
W.
Sediono
, and
W.
Mangestiyono
,
Educ. Chem. Eng.
7
,
e78
e84
(
2012
).
8.
H. S.
Ras
and
S.
Ghizellaoui
,
Energy Procedia
18
,
1511
1522
(
2012
).
9.
K.
Zeppenfeld
,
Desalination
252
,
60
65
(
2010
).
10.
T.
Waly
,
M.D.
Kennedy
,
G.-J.
Witkamp
,
G.
Amy
, and
J.C.
Schippers
,
Desalination
284
,
279
287
(
2012
).
11.
C. Y.
Tai
and
W.C.
Chien
,
Chem. Eng. Sci.
58
,
3233
3241
(
2003
).
12.
K. J.
Westin
and
Å.C.
Rasmuson
,
J. Colloid Interface Sci.
282
,
370
379
(
2005
).
13.
S.
Muryanto
,
A.P.
Bayuseno
,
H.
Ma’mun
, and
M.
Usamah
,
Procedia Chem.
9
,
69
76
(
2014
).
14.
X.
Li
,
B.
Gao
,
Q.
Yue
,
D.
Ma
,
H.
Rong
,
P.
Zhao
, and
P.
Teng
,
J. Environ. Sci.
29
,
124
130
(
2015
).
15.
C.
Garcia
,
G.
Courbin
,
F.
Ropital
, and
C.
Fiaud
,
Electrochim. Acta
46
,
973
985
(
2001
).
16.
Z.
Wu
,
J.H.
Davidson
, and
L.F.
Francis
,
J. Colloid Interface Sci.
343
,
176
187
(
2010
).
17.
Y. S.
Han
,
G.
Hadiko
,
M.
Fuji
, and
M.
Takahashi
,
J. Eur. Ceram. Soc.
26
,
843
847
(
2006
).
18.
C. A.
Weiss
,
K.
Torres-Cancel
,
R.D.
Moser
,
P.G.
Allison
,
E.R.
Gore
,
M.Q.
Chandler
, and
P.G.
Malone
,
J Nanotech Smart Mater
1
,
1
6
(
2014
).
This content is only available via PDF.