Poly(styrene-isobutylene-styrene) (SIBS) is a widely used thermoplastic elastomer in bioimplantable devices due to its inherent stability in vivo. However, the properties of the material are highly dependent on the fabrication conditions, molecular weight, and styrene content. An optimization method for injection molding is herein proposed which can be applied to varying SIBS formulations in order to maximize ultimate tensile strength, which is critical to certain load-bearing implantable applications. The number of injection molded samples required to ascertain the optimum conditions for maximum ultimate tensile strength is limited in order to minimize experimental time and effort. Injection molding parameters including nozzle temperature (three levels: 218, 246, and 274 °C), mold temperature (three levels: 50, 85, and 120 °C), injection speed (three levels: slow, medium and fast) and holding pressure time (three levels: 2, 6, and 10 seconds) were varied to fabricate dumbbell specimens for tensile testing. A three-level L9 Taguchi method utilizing orthogonal arrays was used in order to rank the importance of the different injection molding parameters and to find an optimal parameter setting to maximize the ultimate tensile strength of the thermoplastic elastomer. Based on the Taguchi design results, a Response Surface Methodology (RSM) was applied in order to build a model to predict the tensile strength of the material at different injection parameters. Finally, the model was optimized to find the injection molding parameters providing maximum ultimate tensile strength. Subsequently, the theoretically-optimum injection molding parameters were used to fabricate additional dumbbell specimens. The experimentally-determined ultimate tensile strength of these samples was found to be in close agreement (1.2%) with the theoretical results, successfully demonstrating the suitability of the Taguchi Method and RSM for optimizing injection molding parameters of SIBS.

1.
M.
Boden
,
R.
Richard
,
M.C.
Schwarz
,
S.
Kangas
,
B.
Huibregtse
, and
J.J.
Barry
,
Journal of materials science. Materials in medicine
20
,
1553
62
(
2009
).
2.
M.
El Fray
,
P.
Prowans
,
J.E.
Puskas
, and
V.
Altstadt
,
Biomacromolecules
7
,
844
50
(
2006
).
3.
S.L.
Gallocher
,
A.F.
Aguirre
,
V.
Kasyanov
,
L.
Pinchuk
, and
R.T.
Schoephoerster
,
Journal of biomedical materials research. Part B, Applied biomaterials
79
,
325
34
(
2006
).
4.
L.
Pinchuk
,
G.J.
Wilson
,
J.J.
Barry
,
R.T.
Schoephoerster
,
J.M.
Parel
, and
J.P.
Kennedy
,
Biomaterials
29
,
448
60
(
2008
).
5.
F.
Strickler
,
R.
Richard
,
S.
McFadden
,
J.
Lindquist
,
M.C.
Schwarz
,
R.
Faust
,
G.J.
Wilson
, and
M.
Boden
,
Journal of biomedical materials research. Part A
92
,
773
82
(
2010
).
6.
K.R.
Kamath
,
J.J.
Barry
, and
K.M.
Miller
,
Advanced drug delivery reviews
58
,
412
36
(
2006
).
7.
S. St.
Lawrence
,
D.M.
Shinozaki
,
M.
Gerchcovich
,
U.
Myler
,
J.E.
Puskas
, and
G.
Kaszas
,
Rubber Chemistry and Technology
74
,
601
613
(
2001
).
8.
R.F.
Storey
,
B.J.
Chisholm
, and
M.A.
Masse
,
Polymer
37
,
2925
2938
(
1996
).
9.
Q.
Wang
,
A.J.
McGoron
,
R.
Bianco
,
Y.
Kato
,
L.
Pinchuk
, and
R.T.
Schoephoerster
,
The Journal of heart valve disease
19
,
499
505
(
2010
).
10.
G.T.
Lim
,
E.A.
Foreman-Orlowski
,
S.E.
Porosky
,
P.
Pavka
,
J.E.
Puskas
,
C.
Gotz
, and
V.
Altstadt
,
Rubber Chemistry and Technology
82
,
461
472
(
2009
).
11.
X.P.
Dang
,
Simulation Modelling Practice and Theory
41
,
15
27
(
2014
).
12.
B.
Ozcelik
,
A.
Ozbay
, and
E.
Demirbas
,
International Communications in Heat and Mass Transfer
37
,
1359
1365
(
2010
).
13.
W.C.
Chen
,
M.W.
Wang
,
C.T.
Chen
, and
G.L.
Fu
,
The International Journal of Advanced Manufacturing Technology
44
,
501
511
(
2008
).
14.
M.T.
Chuang
,
Y.K.
Yang
, and
Y.H.
Hsiao
,
Polymer-Plastics Technology and Engineering
48
,
745
753
(
2009
).
15.
W.J.
Deng
,
C.T.
Chen
,
C.H.
Sun
,
W.C.
Chen
, and
C.P.
Chen
,
Polymer-Plastics Technology and Engineering
47
,
910
919
(
2008
).
16.
N.M.
Mehat
and
S.
Kamaruddin
,
Polymer-Plastics Technology and Engineering
50
,
1519
1526
(
2011
).
17.
H.
Oktem
,
T.
Erzurumlu
, and
I.
Uzman
,
Materials & Design
28
,
1271
1278
(
2007
).
18.
C.Y.
Shen
,
L.X.
Wang
, and
Q.
Li
,
Journal of Materials Processing Technology
183
,
412
418
(
2007
).
19.
H.
Shi
,
Y.
Gao
, and
X.
Wang
,
The International Journal of Advanced Manufacturing Technology
48
,
955
962
(
2009
).
20.
P.
Zhao
,
H.
Zhou
,
Y.
Li
, and
D.
Li
,
The International Journal of Advanced Manufacturing Technology
49
,
949
959
(
2009
).
21.
M.
Altan
,
Materials & Design
31
,
599
604
(
2010
).
22.
C.J.
Tzeng
,
Y.K.
Yang
,
Y.H.
Lin
, and
C.H.
Tsai
,
Int J Adv Manuf Tech
63
,
691
704
(
2012
).
23.
G.
Taguchi
,
Bulletin of the Japan Society of Precision Engineering
19
,
237
242
(
1985
).
This content is only available via PDF.